903 resultados para ETHYLENE-GLYCOL DIMETHACRYLATE
Resumo:
A series of dinuclear (bipyridine)tricarbonylrhenium(I) and tris(bipyridine)ruthenium(II) complexes have been isolated and characterised, bridged by a flexible diamido ethylene glycol chain. A new stepwise synthetic pathway has been investigated to heterometallic complexes, with the rhenium(I) complexes exhibiting an unusual configuration and inequivalence of the metal centres potentially arising from a surprising hydrogen-bonding interaction between an Re–CO group and an amide proton in low-polarity solvents. This interaction appears to be broken by competing hydrogen-bonding species such as dihydrogen phosphate. This effect was not observed in the corresponding ruthenium(II) complexes, which showed very little interaction with anions. The photophysical characterisation shows that the inclusion of two ester/amide groups to the rhenium centre effectively quenches the fluorescence at room temperature. The ruthenium(II) complexes have considerably stronger fluorescence than the rhenium species, and are less affected by theinclusion of ester and amide groups to the 2,2'-bipyridine chelating group.
Resumo:
This study examined the rheological/mucoadhesive properties of poly (acrylic acid) PAA organogels as platforms for drug delivery to the oral cavity. Organogels were prepared using PAA (3%, 5%, 10% w/w) dissolved in ethylene glycol (EG), propylene glycol (PG), 1,3-propylene glycol (1,3-PG), 1,5-propanediol (1,5-PD), polyethylene glycol 400 (PEG 400), or glycerol. All organogels exhibited pseudoplastic flow. The increase in storage (G') and loss (G '') moduli of organogels as a function of frequency was minimal, G '' was greater than G '' (at all frequencies), and the loss tangent <1, indicative of gel behavior. Organogels prepared using EG, PG, and 1,3-propanediol (1,3-PD) exhibited similar flow/viscoelastic properties. Enhanced rheological structuring was associated with organogels prepared using glycerol (in particular) and PEG 400 due to their interaction with adjacent carboxylic acid groups on each chain and on adjacent chains. All organogels (with the exception of 1,5-PD) exhibited greater network structure than aqueous PAA gels. Organogel mucoadhesion increased with polymer concentration. Greatest mucoadhesion was associated with glycerol-based formulations, whereas aqueous PAA gels exhibited the lowest mucoadhesion. The enhanced network structure and the excellent mucoadhesive properties of these organogels, both of which may be engineered through choice of polymer concentration/solvent type, may be clinically useful for the delivery of drugs to the oral cavity.
Resumo:
PURPOSE: The presence of novel KCNQ currents was investigated in guinea pig bladder interstitial cells of Cajal and their contribution to the maintenance of the resting membrane potential was assessed. MATERIALS AND METHODS: Enzymatically dispersed interstitial cells of Cajal were patch clamped with K(+) filled pipettes in voltage clamp and current clamp modes. Pharmacological modulators of KCNQ channels were tested on membrane currents and the resting membrane potential. RESULTS: Cells were stepped from -60 to 40 mV to evoke voltage dependent currents using a modified K(+) pipette solution containing ethylene glycol tetraacetic acid (5 mM) and adenosine triphosphate (3 mM) to eliminate large conductance Ca activated K channel and K(adenosine triphosphate) currents. Application of the KCNQ blockers XE991, linopirdine (Tocris Bioscience, Ellisville, Missouri) and chromanol 293B (Sigma) decreased the outward current in concentration dependent fashion. The current-voltage relationship of XE991 sensitive current revealed a voltage dependent, outwardly rectifying current that activated positive to -60 mV and showed little inactivation. The KCNQ openers flupirtine and meclofenamic acid (Sigma) increased outward currents across the voltage range. In current clamp mode XE991 or chromanol 293B decreased interstitial cell of Cajal resting membrane potential and elicited the firing of spontaneous transient depolarizations in otherwise quiescent cells. Flupirtine or meclofenamic acid hyperpolarized interstitial cells of Cajal and inhibited any spontaneous electrical activity. CONCLUSIONS: This study provides electrophysiological evidence that bladder interstitial cells of Cajal have KCNQ currents with a role in the regulation of interstitial cell of Cajal resting membrane potential and excitability. These novel findings provide key information on the ion channels present in bladder interstitial cells of Cajal and they may indicate relevant targets for the development of new therapies for bladder instability.
Resumo:
Ceria (CeO2) is a technologically important rare earth material because of its unique properties and various engineering and biological applications. A facile and rapid method has been developed to prepare ceria nanoparticles using microwave with the average size 7 nm in the presence of a set of ionic liquids based on the bis (trifluoromethylsulfonyl) imide anion and different cations of 1-alkyl-3-methyl-imidazolium. The structural features and optical properties of the nanoparticles were determined in depth with X-ray powder diffraction, transmission electron microscope, N-2 adsorption-desorption technique, dynamic light scattering (DLS) analysis, FTIR spectroscopy, Raman spectroscopy, UV-vis absorption spectroscopy, and Diffuse reflectance spectroscopy. The energy band gap measurements of nanoparticles of ceria have been carried out by UV-visible absorption spectroscopy and diffuse reflectance spectroscopy. The surface charge properties of colloidal ceria dispersions in ethylene glycol have been also studied. To the best of our knowledge, this is the first report on using this type of ionic liquids in ceria nanoparticle synthesis. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
A convenient microwave method in preparation of zinc oxide nanoparticles (ZnONPs) using an ionic liquid, trihexyltetradecylphosphonium bis{(trifluoromethyl)sulfonyl}-imide, [P-66614][NTf2], as a green solvent is described in this paper. To the best of our knowledge, there is no report for synthesizing any nanoparticle using this ionic liquid. Trihexyltetradecylphosphonium bis{(trifluoromethyl)sulfonyl}-imide has low interface tension and thus it can enhance the nucleation rate, which is favorable to the formation of smaller ZnONPs. The fabricated ZnONPs were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV-vis spectroscopy. The XRD pattern reveals that the ZnONPs have hexagonal wurtzite structure. The strong intensity and narrow width of ZnO diffraction peaks indicate that the resulting nanoparticles are of high crystallinity. The synthesized ZnONPs show direct band gap of 3.43 eV. The UV-vis absorption spectrum of ZnONPs dispersed in ethylene glycol at room temperature revealed a blue-shifted onset of absorption. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, the hydrodynamics and the pressure drop of liquid-liquid slug flow in round microcapillaries are presented. Two liquid-liquid flow systems are considered, viz. water-toluene and ethylene glycol/water-toluene. The slug lengths of the alternating continuous and dispersed phases were measured as a function of the slug velocity (0.03-0.5 m/s), the organic-to-aqueous flow ratio (0.1-4.0), and the microcapillary internal diameter (248 and 498 mu m). The pressure drop is modeled as the sum of two contributions: the frictional and the interface pressure drop. Two models are presented, viz, the stagnant film model and the moving film model. Both models account for the presence of a thin liquid film between the dispersed phase slug and the capillary wall. It is found that the film velocity is of negligible influence on the pressure drop. Therefore, the stagnant film model is adequate to accurately predict the liquid-liquid slug flow pressure drop. The influence of inertia and the consequent change of the slug cap curvature are accounted for by modifying Bretherton's curvature parameter in the interface pressure drop equation. The stagnant film model is in good agreement with experimental data with a mean relative error of less than 7%.
Resumo:
Diverse parameters, including chaotropicity, can limit the function of cellular systems and thereby determine the extent of Earth's biosphere. Whereas parameters such as temperature, hydrophobicity, pressure, pH, Hofmeister effects, and water activity can be quantified via standard scales of measurement, the chao-/kosmotropic activities of environmentally ubiquitous substances have no widely accepted, universal scale. We developed an assay to determine and quantify chao-/kosmotropicity for 97 chemically diverse substances that can be universally applied to all solutes. This scale is numerically continuous for the solutes assayed (from +361kJkg-1mol-1 for chaotropes to -659kJkg-1mol-1 for kosmotropes) but there are key points that delineate (i) chaotropic from kosmotropic substances (i.e. chaotropes =+4; kosmotropes =-4kJkg-1mol-1); and (ii) chaotropic solutes that are readily water-soluble (log P<1.9) from hydrophobic substances that exert their chaotropic activity, by proxy, from within the hydrophobic domains of macromolecular systems (log P>1.9). Examples of chao-/kosmotropicity values are, for chaotropes: phenol +143, CaCl2 +92.2, MgCl2 +54.0, butanol +37.4, guanidine hydrochloride +31.9, urea +16.6, glycerol [>6.5M] +6.34, ethanol +5.93, fructose +4.56; for kosmotropes: proline -5.76, sucrose -6.92, dimethylsulphoxide (DMSO) -9.72, mannitol -6.69, trehalose -10.6, NaCl -11.0, glycine -14.2, ammonium sulfate -66.9, polyethylene glycol- (PEG-)1000 -126; and for relatively neutral solutes: methanol, +3.12, ethylene glycol +1.66, glucose +1.19, glycerol [<5M] +1.06, maltose -1.43 (kJkg-1mol-1). The data obtained correlate with solute interactions with, and structure-function changes in, enzymes and membranes. We discuss the implications for diverse fields including microbial ecology, biotechnology and astrobiology.
Resumo:
Using caffeic acid and p-hydroxybenzoic acid as templates, two molecularly imprinted polymers (MIPs) were prepared that were used for isolation of polyphenols from olive mill waste water samples (OMWWs) without previous pre-treatment. For the preparation of the caffeic acid MIPs 4-vinylpyridine, allylurea, allylaniline and methacrylic acid were tested as functional monomers, ethylene glycol dimethylacrylate (EDMA), pentaerythritol trimethylacrylate (PETRA) and divinylbenzene 80 (DVB80) as cross-linkers and tetrahydrofuran as porogen. For p-hydroxybenzoic acid 4-vinylpyridine, allylurea and allylaniline were tested as functional monomers, EDMA and PETRA as cross-linkers and acetonitrile as porogen. The performance of the synthesized polymers was evaluated against seven structurally related compounds by means of polymer-based HPLC. The two polymers that presented the most interesting properties were further evaluated by batch rebinding and from the derived isotherms their capacity and binding strength were determined. Using solid-phase extraction (SPE), their ability to recognize and bind the template molecule from an aqueous solution as well as the pH dependence of the binding strength were explored. After establishing the best SPE protocol, an aqueous model mixture of compounds and a raw OMWWs sample were loaded on the two best polymers. The result of the consecutive use of the two polymers on the same sample was explored. It was concluded that acidic conditions favour the recognition abilities of both polymers and that they can be used for a quick and efficient isolation of the polyphenol fraction directly from raw OMWW.
Resumo:
A biochip based on surface plasmon resonance was fabricated to detect prostate specific antigen-a1-antichymotrypsin (PSA-ACT complex) in both HBS buffer and human serum. To reduce non-specific binding and steric hindrance effect, the chemical surface of the sensor chips was constructed by using various oligo(ethylene glycol) mixtures of different molar ratios of HS(CH2)11(OCH2CH2)6OCH2COOH and HS(CH2)11(OCH2CH2)3OH. The self-assembled monolayers were biotinylated to facilitate the immobilization of streptavidin. Using the chip surfaces, PSA-ACT complex in HBS buffer and human serum was detected at 20.7 and 47.5 ng/ml by primary immunoresponse, respectively. However, the limit of detection could be simply enhanced by a sandwich strategy to improve the sensitivity and specificity of the immunoassay. An intact PSA polyclonal antibody was used as an amplifying agent in the strategy. As a result, PSA-ACT complex concentrations as low as 10.2 and 18.1 ng/ml were found in the HBS buffer and human serum sample, respectively. The result indicates that this approach could satisfy our goal without modifying the secondary interactant.
Resumo:
The overall aim of the project was to study the influence of process variables on the distribution of a model active pharmaceutical ingredient (API) during fluidised melt granulation of pharmaceutical granules with a view of optimising product characteristics. Granules were produced using common pharmaceutical excipients; lactose monohydrate using poly ethylene glycol (PEG1500) as a meltable binder. Methylene blue was used as a model API. Empirical models relating the process variables to the granules properties such as granule mean size, product homogeneity and granule strength were developed using the design of experiment approach. Fluidising air velocity and fluidising air temperature were shown to strongly influence the product properties. Optimisation studies showed that strong granules with homogeneous distribution of the active ingredient can be produced at high fluidising air velocity and at high fluidising air temperatures.
Resumo:
A microwave (MW)-assisted crosslinking process to prepare hydrogel-forming microneedle (MN) arrays was evaluated. Conventionally, such MN arrays are prepared using processes that includes a thermal crosslinking step. Polymeric MN arrays were prepared using poly(methyl vinyl ether-alt-maleic acid) crosslinked by reaction with poly(ethylene glycol) over 24 h at 80 °C. Polymeric MN arrays were prepared to compare conventional process with the novel MW-assisted crosslinking method. Infrared spectroscopy was used to evaluate the crosslinking degree, evaluating the area of the carbonyl peaks (2000–1500 cm−1). It was shown that, by using the MW-assisted process, MN with a similar crosslinking degree to those prepared conventionally can be obtained in only 45 min. The effects of the crosslinking process on the properties of these materials were also evaluated. For this purpose swelling kinetics, mechanical characterisation, and insertion studies were performed. The results suggest that MN arrays prepared using the MW assisted process had equivalent properties to those prepared conventionally but can be produced 30 times faster. Finally, an in vitro caffeine permeation across excised porcine skin was performed using conventional and MW-prepared MN arrays. The release profiles obtained can be considered equivalent, delivering in both cases 3000–3500 μg of caffeine after 24 h.
Resumo:
Surface patterning in three dimensions is of great importance in biomaterials design for controlling cell behavior. A facile one-step functionalization of biodegradable PDLLA fibers using amphiphilic diblock copolymers is demonstrated here to systematically vary the fiber surface composition. The copolymers comprise a hydrophilic poly[oligo(ethylene glycol) methacrylate] (POEGMA), poly[(2-methacryloyloxy)ethyl phosphorylcholine] (PMPC), or poly[2-(dimethylamino)ethyl methacrylate)] (PDMAEMA) block and a hydrophobic poly(l-lactide) (PLA) block. The block copolymer-modified fibers have increased surface hydrophilicity compared to that of PDLLA fibers. Mixtures of PLAPMPC and PLAPOEGMA copolymers are utilized to exploit microphase separation of the incompatible hydrophilic PMPC and POEGMA blocks at the fiber surface. Conjugation of an RGD cell-adhesive peptide to one hydrophilic block (POEGMA) using thiol-ene chemistry produces fibers with domains of cell-adhesive (POEGMA) and cell-inert (PMPC) sites, mimicking the adhesive properties of the extracellular matrix (ECM). Human mesenchymal progenitor cells (hES-MPs) showed much better adhesion to the fibers with surface-adhesive heterogeneity compared to that to fibers with only adhesive or only inert surface chemistries.
Resumo:
Whereas osmotic stress response induced by solutes has been well-characterized in fungi, less is known about the other activities of environmentally ubiquitous substances. The latest methodologies to define, identify and quantify chaotropicity, i.e. substance-induced destabilization of macromolecular systems, now enable new insights into microbial stress biology (Cray et al. in Curr Opin Biotechnol 33:228–259, 2015a, doi:10.1016/j.copbio.2015.02.010; Ball and Hallsworth in Phys Chem Chem Phys 17:8297–8305, 2015, doi:10.1039/C4CP04564E; Cray et al. in Environ Microbiol 15:287–296, 2013a, doi:10.1111/1462-2920.12018). We used Aspergillus wentii, a paradigm for extreme solute-tolerant fungal xerophiles, alongside yeast cell and enzyme models (Saccharomyces cerevisiae and glucose-6-phosphate dehydrogenase) and an agar-gelation assay, to determine growth-rate inhibition, intracellular compatible solutes, cell turgor, inhibition of enzyme activity, substrate water activity, and stressor chaotropicity for 12 chemically diverse solutes. These stressors were found to be: (i) osmotically active (and typically macromolecule-stabilizing kosmotropes), including NaCl and sorbitol; (ii) weakly to moderately chaotropic and non-osmotic, these were ethanol, urea, ethylene glycol; (iii) highly chaotropic and osmotically active, i.e. NH4NO3, MgCl2, guanidine hydrochloride, and CaCl2; or (iv) inhibitory due primarily to low water activity, i.e. glycerol. At ≤0.974 water activity, Aspergillus cultured on osmotically active stressors accumulated low-M r polyols to ≥100 mg g dry weight−1. Lower-M r polyols (i.e. glycerol, erythritol and arabitol) were shown to be more effective for osmotic adjustment; for higher-M r polyols such as mannitol, and the disaccharide trehalose, water-activity values for saturated solutions are too high to be effective; i.e. 0.978 and 0.970 (25 ºC). The highly chaotropic, osmotically active substances exhibited a stressful level of chaotropicity at physiologically relevant concentrations (20.0–85.7 kJ kg−1). We hypothesized that the kosmotropicity of compatible solutes can neutralize chaotropicity, and tested this via in-vitro agar-gelation assays for the model chaotropes urea, NH4NO3, phenol and MgCl2. Of the kosmotropic compatible solutes, the most-effective protectants were trimethylamine oxide and betaine; but proline, dimethyl sulfoxide, sorbitol, and trehalose were also effective, depending on the chaotrope. Glycerol, by contrast (a chaotropic compatible solute used as a negative control) was relatively ineffective. The kosmotropic activity of compatible solutes is discussed as one mechanism by which these substances can mitigate the activities of chaotropic stressors in vivo. Collectively, these data demonstrate that some substances concomitantly induce chaotropicity-mediated and osmotic stresses, and that compatible solutes ultimately define the biotic window for fungal growth and metabolism. The findings have implications for the validity of ecophysiological classifications such as ‘halophile’ and ‘polyextremophile’; potential contamination of life-support systems used for space exploration; and control of mycotoxigenic fungi in the food-supply chain.
Resumo:
In co-melt granulation, collisions occur between the particles to be agglomerated and the binder material. Depending on the stage of granulation, the binder material can be in the solid or liquid phase. The outcome of these collisions controls the dynamics of the granulation process and the fundamental physics of the impacts are of interest. This paper examines the impact of glass beads (model particles) and solid Poly Ethylene Glycol (PEG) flakes on a substrate of PEG as the temperature of the PEG layer is increased from below its melting point to above it. While the layer is in the solid state, the result of the impact can be quantified by the coefficient of restitution. When the layer is in the liquid state, the impact can be quantified by the immersion behaviour. The results obtained show that the coefficient of restitution between either glass beads and PEG flakes and the PEG layer is strongly affected by temperatures. As the PEG layer approaches its melting point, the coefficient of restitution falls to zero. Once the temperature of the PEG layer exceeds the melting point, the impact is characterised by a transient maximum indentation and then rebound to an equilibrium position. These too are strongly dependent on temperature.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Química