901 resultados para EPITHELIAL MORPHOGENESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epithelial to mesenchymal transition (EMT) is a process whereby epithelial cells undergo transition to a mesenchymal phenotype and contribute directly to fibrotic disease. Recent studies support a role for EMT in cutaneous fibrotic diseases including scleroderma and hypertrophic scarring, though there is limited data on the cytokines and signalling mechanisms regulating cutaneous EMT. We investigated the ability of TGF-β and TNF-α, both over-expressed in cutaneous scleroderma and central mediators of EMT in other epithelial cell types, to induce EMT in primary keratinocytes and studied the signalling mechanisms regulating this process. TGF-β induced EMT in normal human epidermal keratinocytes (NHEK cells) and this process was enhanced by TNF-α. EMT was characterised by changes in morphology, proteome (down-regulation of E-cadherin and Zo-1, and up-regulation of vimentin and fibronectin), MMP secretion and COL1α1 mRNA expression. TGF-β and TNF-α in combination activated SMAD and p38 signalling in NHEK cells. P38 inhibition with SB203580 partially attenuated EMT, whereas SMAD inhibition using SB431542 significantly inhibited EMT and also reversed established EMT. These data highlight the retained plasticity of adult keratinocytes and support further studies of EMT in clinically relevant in vivo models of cutaneous fibrosis, and investigation of SMAD inhibition as a potential therapeutic intervention. This article is protected by copyright. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: We have shown previously that macrophages/microglia accumulate in the subretinal space and express CD68 and Arginase-1 in the aging eye. Subretinal macrophages are in close contact with retinal pigment epithelial (RPE) cells. We hypothesize that RPE cells may play an important role in regulating macrophage/microglial phenotype and function. The aim of this study was to investigate the effect of RPE cells on the phenotype and function of bone marrow–derived macrophages (BM-DMs).
Methods: BM-DM from C57BL/6J mice were cultured in DMEM supplemented with 20%L929 cell supernatant for 5 days. The phenotype of BM-DMs was confirmed by flow cytometry as CD11b+F4/80+. Primary RPE cells were cultured from C57BL/6J mice and confirmed by RPE65 and cytokeratin staining. BMDMs were co-cultured with different types of RPE cells (healthy, oxidized, and apoptotic RPE) and then isolated from the co-culture system for phenotypic and functional assays.
Results: Co-culture of BM-DMs with RPE cells results in a time-dependent down-regulation of MHC-II expression and the generation of CD11b+F4/80+Ly6G+ myeloid-derived suppressor cells (MDSC). qRT-PCR analysis showed that RPE-induced MDSCs expressed high levels of IL-6, IL-1β, and Arginase-1, but lower levels of IL-12p40 and TNF-a compared to naïve BM-DMs. The expression levels of iNOS, TGF-β and Ym1 did not differ 207 between naive BMDMs and RPE-induced MDSCs. Furthermore, functional studies showed that these cells had reduced phagocytic activity and lower ability to stimulate T cell activation and proliferation. When RPE cells were pre-treated with oxidized photoreceptor outer segments before co-culturing with BMDMs, the expression of IL-1β and IL-6 in BMDMs was increased whereas the expression of Arginase-1 was decreased. 
Conclusion: Our results suggest that healthy RPE cells can convert BMDMs into myeloid-derived suppressor cells under in vitro culture conditions, RPE-induced myeloid-derived suppressor cells are CD11b+F4/80+Ly6G+MHCIIlowIL6+IL1b+Arg-1+. The ability of RPE cells is reduced when suffering from oxidative insults.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Cigarette smoke induces a pro-inflammatory response in airway epithelial cells but it is not clear which of the various chemicals contained within cigarette smoke (CS) should be regarded as predominantly responsible for these effects. We hypothesised that acrolein, nicotine and acetylaldehyde, important chemicals contained within volatile cigarette smoke in terms of inducing inflammation and causing addiction, have immunomodulatory effects in primary nasal epithelial cell cultures (PNECs).

Methods: PNECs from 19 healthy subjects were grown in submerged cultures and were incubated with acrolein, nicotine or acetylaldehyde prior to stimulation with Pseudomonas aeruginosa lipopolysaccharide (PA LPS). Experiments were repeated using cigarette smoke extract (CSE) for comparison. IL-8 was measured by ELISA, activation of NF-κB by ELISA and Western blotting, and caspase-3 activity by Western blotting. Apoptosis was evaluated using Annexin-V staining and the terminal transferase-mediated dUTP nick end-labeling (TUNEL) method.

Results: CSE was pro-inflammatory after a 24 h exposure and 42% of cells were apoptotic or necrotic after this exposure time. Acrolein was pro-inflammatory for the PNEC cultures (30 μM exposure for 4 h inducing a 2.0 fold increase in IL-8 release) and also increased IL-8 release after stimulation with PA LPS. In contrast, nicotine had anti-inflammatory properties (0.6 fold IL-8 release after 50 μM exposure to nicotine for 24 h), and acetylaldehyde was without effect. Acrolein and nicotine had cellular stimulatory and anti-inflammatory effects respectively, as determined by NF-κB activation. Both chemicals increased levels of cleaved caspase 3 and induced cell death.

Conclusions: Acrolein is pro-inflammatory and nicotine anti-inflammatory in PNEC cultures. CSE induces cell death predominantly by apoptotic mechanisms. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RATIONALE: Epithelial remodelling in asthma is characterised by goblet cell hyperplasia and mucus hypersecretion for which no therapies exist. Differentiated bronchial air-liquid interface cultures from asthmatic children display high goblet cell numbers. Epidermal growth factor and its receptor have been implicated in goblet cell hyperplasia.

OBJECTIVES: We hypothesised that EGF removal or tyrphostin AG1478 treatment of differentiating air-liquid interface cultures from asthmatic children would result in a reduction of epithelial goblet cells and mucus secretion.

METHODS: In Aim 1 primary bronchial epithelial cells from non-asthmatic (n = 5) and asthmatic (n = 5) children were differentiated under EGF-positive (10ng/ml EGF) and EGF-negative culture conditions for 28 days. In Aim 2, cultures from a further group of asthmatic children (n = 5) were grown under tyrphostin AG1478, a tyrosine kinase inhibitor, conditions. All cultures were analysed for epithelial resistance, markers of differentiation using immunocytochemistry, ELISA for MUC5AC mucin secretion and qPCR for MUC5AC mRNA.

RESULTS: In cultures from asthmatic children the goblet cell number was reduced in the EGF negative group (p = 0.01). Tyrphostin AG1478 treatment of cultures from asthmatic children had significant reductions in goblet cells at 0.2μg/ml (p = 0.03) and 2μg/ml (p = 0.003) as well as mucus secretion at 2μg/ml (p = 0.04).

CONCLUSIONS: We have shown in this preliminary study that through EGF removal and tyrphostin AG1478 treatment the goblet cell number and mucus hypersecretion in differentiating air-liquid interface cultures from asthmatic children is significantly reduced. This further highlights the epidermal growth factor receptor as a potential therapeutic target to inhibit goblet cell hyperplasia and mucus hypersecretion in asthma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cervical cancer is a multi-stage disease caused by human papillomaviruses (HPV) infection of cervical epithelial cells, but the mechanisms regulating disease progression are not clearly defined. Using 3-dimensional organotypic cultures, we demonstrate that HPV16 E6 and E7 proteins alter the secretome of primary human keratinocytes resulting in local epithelial invasion. Mechanistically, absence of the IGF-binding protein 2 (IGFBP2) caused increases in IGFI/II signalling and through crosstalk with KGF/FGFR2b/AKT, cell invasion. Repression of IGFBP2 is mediated by histone deacetylation at the IGFBP2 promoter and was reversed by treatment with histone deacetylase (HDAC) inhibitors. Our in vitro findings were confirmed in 50 invasive cancers and 79 cervical intra-epithelial neoplastic lesions caused by HPV16 infection, where IGFBP2 levels were reduced with increasing disease severity. In summary, the loss of IGFBP2 is associated with progression of premalignant disease, and sensitises cells to pro-invasive IGF signalling, and together with stromal derived factors promotes epithelial invasion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Until recently the airway epithelial cell (AEC) was considered a simple barrier that prevented entry of inhaled matter into the lung parenchyma. The AEC is now recognized as having an important role in the inflammatory response of the respiratory system to inhaled exposures, and abnormalities of these responses are thought to be important to asthma pathogenesis. This review first explores how the challenges of studying nasal and bronchial AECs in children have been addressed and then summarizes the results of studies of primary AEC function in children with and without asthma. There is good evidence that nasal AECs may be a suitable surrogate for the study of certain aspects of bronchial AEC function, although bronchial AECs remain the gold standard for asthma research. There are consistent differences between children with and without asthma for nasal and bronchial AEC mediator release following exposure to a range of pro-inflammatory stimulants including interleukins (IL)-1β, IL-4, and IL-13. However, there are inconsistencies between studies, e.g., release of IL-6, an important pro-inflammatory cytokine, is not increased in children with asthma relative to controls in all studies. Future work should expand current understanding of the "upstream" signalling pathways in AEC, study AEC from children before the onset of asthma symptoms and in vitro models should be developed that replicate the in vivo status more completely, e.g., co-culture with dendritic cells. AECs are difficult to obtain from children and collaboration between centers is expected to yield meaningful advances in asthma understanding and ultimately help deliver novel therapies. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: NF-κB-driven inflammation is negatively regulated by the zinc finger protein A20. Gibberellic acid (GA3 ) is a plant-derived diterpenoid with documented anti-inflammatory activity, which is reported to induce A20-like zinc finger proteins in plants. Here, we sought to investigate the anti-inflammatory effect of GA3 in airway epithelial cells and determine if the anti-inflammatory action relates to A20 induction.

EXPERIMENTAL APPROACH: Primary nasal epithelial cells and a human bronchial epithelial cell line (16HBE14o-) were used. Cells were pre-incubated with GA3 , stimulated with Pseudomonas aeruginosa LPS; IL-6 and IL-8 release, A20, NF-κB and IκBα expression were then evaluated. To determine if any observed anti-inflammatory effect occurred via an A20-dependent mechanism, A20 was silenced using siRNA.

KEY RESULTS: Cells pre-incubated with GA3 had significantly increased levels of A20 mRNA (4 h) and protein (24 h), resulting in a significant reduction in IL-6 and IL-8 release. This effect was mediated via reduced IκBα degradation and reduced NF-κB (p65) expression. Furthermore, the anti-inflammatory action of GA3 was abolished in A20-silenced cells.

CONCLUSIONS AND IMPLICATIONS: We showed that A20 induction by GA3 attenuates inflammation in airway epithelial cells, at least in part through its effect on NF-κB and IκBα. GA3 or gibberellin-derived derivatives could potentially be developed into anti-inflammatory drugs for the treatment of chronic inflammatory diseases associated with A20 dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Volume-regulated anion channels (VRACs) are widely present in various cell types and have important functions ranging from regulatory volume decrease to control of cell proliferation and apoptosis. Here we aimed to compare the biophysical features and pharmacological profiles of VRAC currents in healthy and cystic fibrosis (CF) respiratory epithelial cells in order to characterize these currents both functionally and pharmacologically. Whole-cell electrophysiology was used to characterize the VRAC current in normal (16HBE14o-; HBE) and CF cell lines (CFBE14o-; CFBE), as well as in native human nasal epithelial cells. Application of hypotonic solution produced current responses of similar sizes in both HBE and CFBE cells. Biophysical properties of VRACs, such as instantaneous activation and deactivation upon voltage step, some inactivation at potentials positive to 40 mV and outwardly-rectifying I-V curves, were indistinguishable in both cell types. Extensive pharmacological analysis of the currents revealed a similar pharmacological profile in response to three blockers--NPPB, DCPIB and DIDS. Native primary human nasal epithelial cells from both healthy and CF volunteers also showed typical VRAC responses of comparable sizes. VRACs in these cells were more sensitive to external solution hypotonicity compared to HBE and CFBE cells. In all cell types studied robust VRAC currents could be induced at constant cell volume by G-protein activation with GTPγS infusion. This study provides the first extensive comparative functional and pharmacological analysis of VRAC currents in normal and CF airway epithelial cells and shows that VRACs are unimpaired molecularly or functionally in CF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In COPD inflammation driven by exposure to tobacco smoke results in impaired innate immunity in the airway and ultimately to lung injury and remodeling. To understand the biological processes involved in host interactions with cigarette derived toxins submerged epithelial cell culture is widely accepted as a model for primary human airway epithelial cell culture research. Primary nasal and bronchial epithelial cells can also be cultured in air-liquid interface (ALI) models. ALI and submerged culture models have their individual merits, and the decision to use either technique should primarily be determined primarily by the research hypothesis.

Cigarette smoke has gaseous and particulate matter, the latter constituent primarily represented in cigarette smoke extract (CSE). Although not ideal in order to facilitate our understanding of the responses of epithelial cells to cigarette smoke, CSE still has scientific merit in airway cell biology research. Using this model, it has been possible to demonstrate differences in levels of tight junction disruption after CSE exposure along with varied vulnerability to the toxic effects of CSE in cell cultures derived from COPD and control study groups.

Primary nasal epithelial cells (PNECs) have been used as an alternative to bronchial epithelial cells (PBECs). However, at least in subjects with COPD, PNECs cannot consistently substitute for PBECs. Although airway epithelial cells from patients with COPD exhibit a constitutional pro-inflammatory phenotype, these cells have a diminished inflammatory response to CSE exposure. COPD epithelial cells have an increased susceptibility to undergo apoptosis, and have reduced levels of Toll-like receptor-4 expression after CSE exposure, both of which may account for the reduced inflammatory response observed in this group.

The use of CSE in both submerged and ALI epithelial cultures has extended our understanding of the cellular mechanisms that are important in COPD, and helped to unravel important pathways which may be of relevance in its pathogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reciprocal interaction between cancer cells and the tissue-specific stroma is critical for primary and metastatic tumor growth progression. Prostate cancer cells colonize preferentially bone (osteotropism), where they alter the physiological balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption, and elicit prevalently an osteoblastic response (osteoinduction). The molecular cues provided by osteoblasts for the survival and growth of bone metastatic prostate cancer cells are largely unknown. We exploited the sufficient divergence between human and mouse RNA sequences together with redefinition of highly species-specific gene arrays by computer-aided and experimental exclusion of cross-hybridizing oligonucleotide probes. This strategy allowed the dissection of the stroma (mouse) from the cancer cell (human) transcriptome in bone metastasis xenograft models of human osteoinductive prostate cancer cells (VCaP and C4-2B). As a result, we generated the osteoblastic bone metastasis-associated stroma transcriptome (OB-BMST). Subtraction of genes shared by inflammation, wound healing and desmoplastic responses, and by the tissue type-independent stroma responses to a variety of non-osteotropic and osteotropic primary cancers generated a curated gene signature ("Core" OB-BMST) putatively representing the bone marrow/bone-specific stroma response to prostate cancer-induced, osteoblastic bone metastasis. The expression pattern of three representative Core OB-BMST genes (PTN, EPHA3 and FSCN1) seems to confirm the bone specificity of this response. A robust induction of genes involved in osteogenesis and angiogenesis dominates both the OB-BMST and Core OB-BMST. This translates in an amplification of hematopoietic and, remarkably, prostate epithelial stem cell niche components that may function as a self-reinforcing bone metastatic niche providing a growth support specific for osteoinductive prostate cancer cells. The induction of this combinatorial stem cell niche is a novel mechanism that may also explain cancer cell osteotropism and local interference with hematopoiesis (myelophthisis). Accordingly, these stem cell niche components may represent innovative therapeutic targets and/or serum biomarkers in osteoblastic bone metastasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retinal pigment epithelial (RPE) cells are central to retinal health and homoeostasis. Dysfunction or death of RPE cells underlies many age-related retinal degenerative disorders particularly age-related macular degeneration. During aging RPE cells decline in number, suggesting an age-dependent cell loss. RPE cells are considered to be postmitotic, and how they repair damage during aging remains poorly defined. We show that RPE cells increase in size and become multinucleate during aging in C57BL/6J mice. Multinucleation appeared not to be due to cell fusion, but to incomplete cell division, that is failure of cytokinesis. Interestingly, the phagocytic activity of multinucleate RPE cells was not different from that of mononuclear RPE cells. Furthermore, exposure of RPE cells in vitro to photoreceptor outer segment (POS), particularly oxidized POS, dose-dependently promoted multinucleation and suppressed cell proliferation. Both failure of cytokinesis and suppression of proliferation required contact with POS. Exposure to POS also induced reactive oxygen species and DNA oxidation in RPE cells. We propose that RPE cells have the potential to proliferate in vivo and to repair defects in the monolayer. We further propose that the conventionally accepted 'postmitotic' status of RPE cells is due to a modified form of contact inhibition mediated by POS and that RPE cells are released from this state when contact with POS is lost. This is seen in long-standing rhegmatogenous retinal detachment as overtly proliferating RPE cells (proliferative vitreoretinopathy) and more subtly as multinucleation during normal aging. Age-related oxidative stress may promote failure of cytokinesis and multinucleation in RPE cells.