998 resultados para ENERGY DECAY
Resumo:
Computational simulations of the title reaction are presented, covering a temperature range from 300 to 2000 K. At lower temperatures we find that initial formation of the cyclopropene complex by addition of methylene to acetylene is irreversible, as is the stabilisation process via collisional energy transfer. Product branching between propargyl and the stable isomers is predicted at 300 K as a function of pressure for the first time. At intermediate temperatures (1200 K), complex temporal evolution involving multiple steady states begins to emerge. At high temperatures (2000 K) the timescale for subsequent unimolecular decay of thermalized intermediates begins to impinge on the timescale for reaction of methylene, such that the rate of formation of propargyl product does not admit a simple analysis in terms of a single time-independent rate constant until the methylene supply becomes depleted. Likewise, at the elevated temperatures the thermalized intermediates cannot be regarded as irreversible product channels. Our solution algorithm involves spectral propagation of a symmetrised version of the discretized master equation matrix, and is implemented in a high precision environment which makes hitherto unachievable low-temperature modelling a reality.
Resumo:
Resonance phenomena associated with the unimolecular dissociation of HO2 have been investigated quantum-mechanically by the Lanczos homogeneous filter diagonalization (LHFD) method. The calculated resonance energies, rates (widths), and product state distributions are compared to results from an autocorrelation function-based filter diagonalization (ACFFD) method. For calculating resonance wave functions via ACFFD, an analytical expression for the expansion coefficients of the modified Chebyshev polynomials is introduced. Both dissociation rates and product state distributions of O-2 show strong fluctuations, indicating the dissociation of HO2 is essentially irregular. (C) 2001 American Institute of Physics.
Resumo:
Objective: The purpose of this study was to compare the energy cost of standardized physical activity (ECA) between patients with cystic fibrosis (CF) and healthy control subjects. Design: Cross-sectional study using patients with CF and volunteers from the community. Setting: University laboratory. Subjects: Fifteen patients (age 24.6 +/- 4.6 y) recruited with consent from their treating physician and 16 healthy control subjects (age 25.3 +/- 3.2) recruited via local advertisement. Interventions. Patients and controls walked on a computerised treadmill at 1.5 km/h for 60 min followed by a 60 min recovery period and, on a second occasion, cycled at 0.5 kp (kilopond), 30 rpm followed by a 60 min recovery. The ECA was measured via indirect calorimetry. Resting energy expenditure (REE), nutritional status, pulmonary function and genotype were determined. Results: The REE in patients was significantly greater than the REE measured in controls (P = 0.03) and was not related to the severity of lung disease or genotype. There was a significant difference between groups when comparing the ECA for walking kg root FFM (P = 0.001) and cycling kg root FFM (P = 0.04). The ECA for each activity was adjusted (ECA(adj)) for the contribution of REE (ECA kJ kg root FFM 120 min(-1) - REE kJ kg root FFM 120 min(-1)). ECA(adj) revealed a significant difference between groups for the walking protocol (P = 0.001) but no difference for the cycling protocol (P = 0.45). This finding may be related to the fact that the work rate during walking was more highly regulated than during cycling. Conclusions ECA in CF is increased and is likely to be explained by an additional energy-requiring component related to the exercise itself and not an increased REE. Sponsorship. The Prince Charles Hospital Foundation; MLR was in receipt of a QUTPRA Scholarship.
Resumo:
Objectives: To assess the accuracy of reporting from both a diet history and food record and identify some of the characteristics of more accurate reporters in a group of healthy adult volunteers for an energy balance study. Design: Prospective measurements in free-living people. Setting: Wollongong, Australia. Subjects: Fifteen healthy volunteers (seven male, eight female; aged 22 -59 y; body mass index (BMI) 19 - 33 kg/m(2)) from the local community in the city of Wollongong, Australia. Interventions: Measurement of energy intake via diet history interview and 7 day food records, total energy expenditure by the doubly labelled water technique over 14 days, physical activity by questionnaire, and body fat by dual-energy X-ray absorptiometry. Results: Increased misreporting of energy intake was associated with increased energy expenditure (r = 0.90, P < 0.0001, diet history; r(s)=0.79, P=0.0005, food records) but was not associated with age, sex, BMI or body fat. Range in number of recorded dinner foods correlated positively with energy expenditure (r(s)=0.63, P=0.01) and degree of misreporting (r(s)=0.71, P=0.003, diet history; r(s)=0.63, P=0.01, food records). Variation in energy intake at dinner and over the whole day identified by the food records correlated positively with energy expenditure (r=0.58, P = 0.02) and misreporting on the diet history (r=0.62, P=0.01). Conclusions: Subjects who are highly active or who have variable dietary and exercise behaviour may be less accurate in reporting dietary intake. Our findings indicate that it may be necessary to screen for these characteristics in studies where accuracy of reporting at an individual level is critical. Sponsorship: The study was supported in part by Australian Research Council funds made available through the University of Wollongong.
Resumo:
Purpose: The aim of this study was to assess the accuracy of a (CO2)-C-13 breath test for the prediction of short-duration energy expenditure. Methods: Eight healthy volunteers walked at 1.5 km.h(-1) for 60 min followed by 60-min recovery. During this time, the energy cost of physical activity was measured via respiratory calorimetry and a C-13 bicarbonate breath test. A further eight subjects were tested using the same two methods during a 60-min cycle at 0.5 kp. 30 ipm followed by a 60-min recovery. The rate of appearance of (CO2)-C-13, (RaCO2) was measured and the mean ratio, (V) over dot CO2/RaCO2 was used to calculate energy expenditure using the isotopic approach. Results: As would be expected, there was a significant difference in the energy cost of walking and cycling using both methods (P < 0.05). However. no significant differences were observed between respiratory calorimetry and the isotope method for measurement of energy expenditure while walking or cycling. Conclusions: These data suggest that the C-13 breath test is a valid method that can be used to measure the energy cost of short duration physical activity in a field setting.
Resumo:
Purpose: The training program undertaken by many athletes will affect directly the total, habitual energy requirements of that individual. Unless that energy requirement is met via the diet and or supplementation, chronic negative energy balance will ensue, which will have both short-term and long-term effects not only on performance but also on general health. The aim of this research was therefore to determine the energy expenditure (EE) and hence energy requirements of lightweight female rowers and, further, to compare this with their self-reported energy intake (EI). Methods: The El of seven lightweight female rowers was measured using a self-reported 4-d weighed dietary record. EE was determined using the doubly labeled water (DLW) technique over a 14-d period. Results: The mean (+/-SD) age, height, and weight of the subjects was 20 (+/-1.1) yr, 168.8 (+/-4.7) cm, and 60.9 (+/-23) kg, respectively. The rowers self-reported El was 2214 (+/-313) kcal.d(-1) and their total EE was 3957 (+/-1219) kcal.d(-1). After adjusting total EE for changes in body weight (mean (+/-SD) - 1.2 (+/-1.2) kg), the comparison between adjusted El and reported showed a bias to underreporting of 1133 (+/-1539) kcal.d(-1) or 34%. The bias was not consistent across adjusted El, and two of the seven subjects overreported their intake. Conclusions: Due to the underreporting of EI, diet recording may not be an appropriate way of assessing energy requirements in lightweight female rowers. A benefit of accurately determining energy requirements, as with DLW, is that female lightweight rowers will be able to successfully manipulate their EI and achieve the set weight cut-off for participation without compromising their health or performance.
Resumo:
Field quantization in unstable optical systems is treated by expanding the vector potential in terms of non-Hermitean (Fox-Li) modes. We define non-Hermitean modes and their adjoints in both the cavity and external regions and make use of the important bi-orthogonality relationships that exist within each mode set. We employ a standard canonical quantization procedure involving the introduction of generalized coordinates and momenta for the electromagnetic (EM) field. Three-dimensional systems are treated, making use of the paraxial and monochromaticity approximations for the cavity non-Hermitean modes. We show that the quantum EM field is equivalent to a set of quantum harmonic oscillators (QHOs), associated with either the cavity or the external region non-Hermitean modes, and thus confirming the validity of the photon model in unstable optical systems. Unlike in the conventional (Hermitean mode) case, the annihilation and creation operators we define for each QHO are not Hermitean adjoints. It is shown that the quantum Hamiltonian for the EM field is the sum of non-commuting cavity and external region contributions, each of which can be expressed as a sum of independent QHO Hamiltonians for each non-Hermitean mode, except that the external field Hamiltonian also includes a coupling term responsible for external non-Hermitean mode photon exchange processes. The non-commutativity of certain cavity and external region annihilation and creation operators is associated with cavity energy gain and loss processes, and may be described in terms of surface integrals involving cavity and external region non-Hermitean mode functions on the cavity-external region boundary. Using the essential states approach and the rotating wave approximation, our results are applied to the spontaneous decay of a two-level atom inside an unstable cavity. We find that atomic transitions leading to cavity non-Hermitean mode photon absorption are associated with a different coupling constant to that for transitions leading to photon emission, a feature consequent on the use of non-Hermitean mode functions. We show that under certain conditions the spontaneous decay rate is enhanced by the Petermann factor.
Resumo:
Efficient intramolecular electronic energy transfer (EET) has been demonstrated for three novel bichromophoric compounds utilizing a macrocyclic spacer as the bridge between the electronic energy donor and acceptor fragments. As their free base forms, emission from the electronically excited donor is absent and the acceptor emission is reductively quenched via photoinduced oxidation of proximate amine lone pairs. As their Zn(II) complexes, excitation of the donor results in sensitization of the electronic acceptor emission.
Resumo:
Control of chaotic instability in a rotating multibody system in the form of a dual-spin spacecraft with an axial nutational damper is achieved using an algorithm derived using energy methods. The control method is implemented on two realistic spacecraft parameter configurations which have been found to exhibit chaotic instability when a sinusoidally varying torque is applied to the spacecraft for a range of forcing amplitudes and frequencies. Such a torque, in practice, may arise under malfunction of the control system or from an unbalanced rotor. Chaotic instabilities arising from these torques could introduce uncertainties and irregularities into a spacecraft's attitude and consequently impair pointing accuracy. The control method is formulated from nutational stability results derived using an energy sink approximation for a dual-spin spacecraft with an asymmetric platform and axisymmetric rotor. The effectiveness of the control method is shown numerically and the results are studied by means of time history, phase space, Poincare map, Lyapunov characteristic exponents and Bifurcation diagrams.
Resumo:
The flow field and the energy transport near thermoacoustic couples are simulated using a 2D full Navier-Stokes solver. The thermoacoustic couple plate is maintained at a constant temperature; plate lengths, which are short and long compared with the particle displacement lengths of the acoustic standing waves, are tested. Also investigated are the effects of plate spacing and the amplitude of the standing wave. Results are examined in the form of energy vectors, particle paths, and overall entropy generation rates. These show that a net heat-pumping effect appears only near the edges of thermoacoustic couple plates, within about a particle displacement distance from the ends. A heat-pumping effect can be seen even on the shortest plates tested when the plate spacing exceeds the thermal penetration depth. It is observed that energy dissipation near the plate increases quadratically as the plate spacing is reduced. The results also indicate that there may be a larger scale vortical motion outside the plates which disappears as the plate spacing is reduced. (C) 2002 Acoustical Society of America.
Resumo:
A group of 31 young females, tennis players and non-athletes, aged 16 2 years (range: 14 - 21 years), with a wide range of physical activity levels was used to investigate the relationship between total daily energy expenditure and the incidence of upper respiratory tract infection symptoms. Methods: During a 12 week winter period, habitual daily activity (excluding training) was evaluated using a 3-day physical activity record. Tennis training was quantified using a validated method of estimating energy expenditure during play. Total daily energy expenditure was calculated from the sum of daily training plus mean habitual daily activity energy expenditures. The total group of subjects was divided in quartiles for total daily energy expenditure. A validated symptom checklist was used to assess the incidence and severity of upper respiratory tract infections, on a daily basis. Results: The girls in the highest quartile of total daily energy expenditure (greater than or equal to 17322 kJ/day) and in the lowest quartile (less than or equal to 10 047 kJ/day) had the greatest incidence of URTI symptomatology, although the moderately active girls in quartile three (12290-16410 kJ/day) presented the lowest incidence. Significant differences in number of upper respiratory tract infection episodes, sickness days and symptomatology index were found between quartiles three and one (p < 0.05) and quartiles three and four (p < 0.01). Peak severity of symptoms was significantly lower in quartile three compared with all other quartiles (p < 0.05).