351 resultados para ELECTROSPINNING


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three-dimensional TiO2 with tunable morphology and crystalline phase was successfully prepared by the electrospinning technique and subsequent annealing. Porous-shaped anatase TiO2, cluster-shaped anatase TiO2, hierarchical-shaped rutile (minor) TiO2 and nano-necklace rutile (major) TiO2 were achieved at 500, 600, 700 and 800°C, respectively. The mechanism of the formation of these tailored morphologies and crystallinity was investigated. Lithium insertion properties were evaluated by galvanostatic and potentiostatic modes in half-cell configurations. By combining the large surface area, open mesoporosity and stable crystalline phase, the porous-shaped anatase TiO2 exhibited the highest capacity, best rate and cycling performance among the four samples. The present results demonstrated the usefulness of three-dimensional TiO 2 as an anode for lithium storage with improved electrode performance. © 2013 The Royal Society of Chemistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon is a versatile material which is composed of different allotropes, and also come in with different structures. Carbon nanofibres (CNFs) is one dimensional carbon nanomaterials, which have exhibited superior mechanical properties, great specific area, good electrical conductivity, good biocompatibility, and ease of modification. In addition to the lower cost associated to compare with carbon nanotubes (CNTs), CNFs have been attracted in numerous applications, such as reinforcement materials, filtrations, Li-ion battery, supercapacitor as well as tissue engineering, just to list a few. Therefore, it is a great deal to understand the relationship between the fabrication conditions and the characteristics of the resulted CNFs. In this project, electrospun PAN NFs were used as precursor material to fabricate carbon nanofibres. In order to produce CNFs with good morphology, the processing parameters of PAN nanofibres by electrospinning was optimized toward to the morphology at solution concentration of 12 wt%. The optimized processing parameters at given concentration were 16 kV, 14 cm and 1.5 mL/h, which led to the formation of PAN NFs with average fibre diameter of approximately 260 nm. Along with the effect of processing parameter study, the effect of concentration on the morphology was also carried out at optimized processing parameters. It was found that by increasing concentration of PAN solution from 2 to 16%, the resulted PAN transformed from beads only, to beaded fibres and finally to smooth fibres. With further increasing concentration the morphology of smooth fibres remain with increase in the fibre diameter. Electrospun PAN NFs with average fibre of 306 nm was selected to be converted into CNFs by using standard heating procedures, stabilisation in air at 280 °C and carbonization in N2. The effect of carbonization temperature ranging from 500 to 1000 °C was investigated, by using SEM, FTIR, Raman, and Impedance spectroscopy. With increasing carbonization temperature from 500 to 1000 °C, the diameter of NFs was decreased from 260 to 187, associated with loss of almost all functional groups of NFs. It was indicated by Raman results, that the graphitic crystallite size was increased from 2.62 to 5.24 nm, and the activation energy obtained for this growth was 7570 J/mol. Furthermore, impedance results (i.e. Cole-Cole plot) revealed that the electrical characteristic of CNFs transitioned from being insulating to electrically conducting in nature, suggested by the different electrical circuits extracted from Cole-Cole plots with carbonization temperature from 500 to 800 °C. The carbonization on PAN NFs with diameter of ~431nm was carried out by using novel route, microwave plasma enhance chemical vapour deposition (MPECVD) process. To compare with carbonized PAN NFs by using conventional route, MPECVD was not only able to facilitate carbonization process, but more interestingly can form carbon nanowalls (CNWs) grown on the surfaces of carbonized PAN NFs. Suggested by the unique morphology, the potential applications for the resulted carbon fibrous hybrid materials are supercapacitor electrode material, filtrations, and etc., The method developed in this project required one step less, compared with other literature. Therefore, using MPECVD on stabilised PAN NFs is proposed as economical, and straightforward approach towards mass production of carbon fibrous hybrid materials containing CNWs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CuAlO2 has been examined as a potential luminescent material by substituting Eu for Al cations in the delafossite structure. CuAlO2:Eu3+ nanofibers have been prepared via electrospinning for the ease of mitigating synthesis requirements and for future optoelectronics and emerging applications. Single-phase CuAlO2 fibers could be obtained at a temperature of 1100 °C in air. The Eu was successfully doped in the delafossite structure and two strong emission bands at ~405 and 610 nm were observed in the photoluminescence spectra. These bands are due to the intrinsic near-band-edge transition of CuAlO2 and the f-f transition of the Eu3+ activator, respectively. Further electrical characterization indicated that these fibers exhibit semiconducting behavior and the introduction of Eu could act as band-edge modifiers, thus changing the thermal activation energies. In light of this study, CuAlO2:Eu3+ fibers with both strong photoluminescence and p-type conductivity could be produced by tailoring the rare earth doping concentrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Burn injuries in the United States account for over one million hospital admissions per year, with treatment estimated at four billion dollars. Of severe burn patients, 30-90% will develop hypertrophic scars (HSc). Current burn therapies rely upon the use of bioengineered skin equivalents (BSEs), which assist in wound healing but do not prevent HSc. HSc contraction occurs of 6-18 months and results in the formation of a fixed, inelastic skin deformity, with 60% of cases occurring across a joint. HSc contraction is characterized by abnormally high presence of contractile myofibroblasts which normally apoptose at the completion of the proliferative phase of wound healing. Additionally, clinical observation suggests that the likelihood of HSc is increased in injuries with a prolonged immune response. Given the pathogenesis of HSc, we hypothesize that BSEs should be designed with two key anti-scarring characterizes: (1) 3D architecture and surface chemistry to mitigate the inflammatory microenvironment and decrease myofibroblast transition; and (2) using materials which persist in the wound bed throughout the remodeling phase of repair. We employed electrospinning and 3D printing to generate scaffolds with well-controlled degradation rate, surface coatings, and 3D architecture to explore our hypothesis through four aims.

In the first aim, we evaluate the impact of elastomeric, randomly-oriented biostable polyurethane (PU) scaffold on HSc-related outcomes. In unwounded skin, native collagen is arranged randomly, elastin fibers are abundant, and myofibroblasts are absent. Conversely, in scar contractures, collagen is arranged in linear arrays and elastin fibers are few, while myofibroblast density is high. Randomly oriented collagen fibers native to the uninjured dermis encourage random cell alignment through contact guidance and do not transmit as much force as aligned collagen fibers. However, the linear ECM serves as a system for mechanotransduction between cells in a feed-forward mechanism, which perpetuates ECM remodeling and myofibroblast contraction. The electrospinning process allowed us to create scaffolds with randomly-oriented fibers that promote random collagen deposition and decrease myofibroblast formation. Compared to an in vitro HSc contraction model, fibroblast-seeded PU scaffolds significantly decreased matrix and myofibroblast formation. In a murine HSc model, collagen coated PU (ccPU) scaffolds significantly reduced HSc contraction as compared to untreated control wounds and wounds treated with the clinical standard of care. The data from this study suggest that electrospun ccPU scaffolds meet the requirements to mitigate HSc contraction including: reduction of in vitro HSc related outcomes, diminished scar stiffness, and reduced scar contraction. While clinical dogma suggests treating severe burn patients with rapidly biodegrading skin equivalents, these data suggest that a more long-term scaffold may possess merit in reducing HSc.

In the second aim, we further investigate the impact of scaffold longevity on HSc contraction by studying a degradable, elastomeric, randomly oriented, electrospun micro-fibrous scaffold fabricated from the copolymer poly(l-lactide-co-ε-caprolactone) (PLCL). PLCL scaffolds displayed appropriate elastomeric and tensile characteristics for implantation beneath a human skin graft. In vitro analysis using normal human dermal fibroblasts (NHDF) demonstrated that PLCL scaffolds decreased myofibroblast formation as compared to an in vitro HSc contraction model. Using our murine HSc contraction model, we found that HSc contraction was significantly greater in animals treated with standard of care, Integra, as compared to those treated with collagen coated-PLCL (ccPLCL) scaffolds at d 56 following implantation. Finally, wounds treated with ccPLCL were significantly less stiff than control wounds at d 56 in vivo. Together, these data further solidify our hypothesis that scaffolds which persist throughout the remodeling phase of repair represent a clinically translatable method to prevent HSc contraction.

In the third aim, we attempt to optimize cell-scaffold interactions by employing an anti-inflammatory coating on electrospun PLCL scaffolds. The anti-inflammatory sub-epidermal glycosaminoglycan, hyaluronic acid (HA) was used as a coating material for PLCL scaffolds to encourage a regenerative healing phenotype. To minimize local inflammation, an anti-TNFα monoclonal antibody (mAB) was conjugated to the HA backbone prior to PLCL coating. ELISA analysis confirmed mAB activity following conjugation to HA (HA+mAB), and following adsorption of HA+mAB to the PLCL backbone [(HA+mAB)PLCL]. Alican blue staining demonstrated thorough HA coating of PLCL scaffolds using pressure-driven adsorption. In vitro studies demonstrated that treatment with (HA+mAB)PLCL prevented downstream inflammatory events in mouse macrophages treated with soluble TNFα. In vivo studies using our murine HSc contraction model suggested positive impact of HA coating, which was partiall impeded by the inclusion of the TNFα mAB. Further characterization of the inflammatory microenvironment of our murine model is required prior to conclusions regarding the potential for anti-TNFα therapeutics for HSc. Together, our data demonstrate the development of a complex anti-inflammatory coating for PLCL scaffolds, and the potential impact of altering the ECM coating material on HSc contraction.

In the fourth aim, we investigate how scaffold design, specifically pore dimensions, can influence myofibroblast interactions and subsequent formation of OB-cadherin positive adherens junctions in vitro. We collaborated with Wake Forest University to produce 3D printed (3DP) scaffolds with well-controlled pore sizes we hypothesized that decreasing pore size would mitigate intra-cellular communication via OB-cadherin-positive adherens junctions. PU was 3D printed via pressure extrusion in basket-weave design with feature diameter of ~70 µm and pore sizes of 50, 100, or 150 µm. Tensile elastic moduli of 3DP scaffolds were similar to Integra; however, flexural moduli of 3DP were significantly greater than Integra. 3DP scaffolds demonstrated ~50% porosity. 24 h and 5 d western blot data demonstrated significant increases in OB-cadherin expression in 100 µm pores relative to 50 µm pores, suggesting that pore size may play a role in regulating cell-cell communication. To analyze the impact of pore size in these scaffolds on scarring in vivo, scaffolds were implanted beneath skin graft in a murine HSc model. While flexural stiffness resulted in graft necrosis by d 14, cellular and blood vessel integration into scaffolds was evident, suggesting potential for this design if employed in a less stiff material. In this study, we demonstrate for the first time that pore size alone impacts OB-cadherin protein expression in vitro, suggesting that pore size may play a role on adherens junction formation affiliated with the fibroblast-to-myofibroblast transition. Overall, this work introduces a new bioengineered scaffold design to both study the mechanism behind HSc and prevent the clinical burden of this contractile disease.

Together, these studies inform the field of critical design parameters in scaffold design for the prevention of HSc contraction. We propose that scaffold 3D architectural design, surface chemistry, and longevity can be employed as key design parameters during the development of next generation, low-cost scaffolds to mitigate post-burn hypertrophic scar contraction. The lessening of post-burn scarring and scar contraction would improve clinical practice by reducing medical expenditures, increasing patient survival, and dramatically improving quality of life for millions of patients worldwide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New methods for creating theranostic systems with simultaneous encapsulation of therapeutic, diagnostic, and targeting agents are much sought after. This work reports for the first time the use of coaxial electrospinning to prepare such systems in the form of core–shell fibers. Eudragit S100 was used to form the shell of the fibers, while the core comprised poly(ethylene oxide) loaded with the magnetic resonance contrast agent Gd(DTPA) (Gd(III) diethylenetriaminepentaacetate hydrate) and indomethacin as a model therapeutic agent. The fibers had linear cylindrical morphologies with clear core–shell structures, as demonstrated by electron microscopy. X-ray diffraction and differential scanning calorimetry proved that both indomethacin and Gd(DTPA) were present in the fibers in the amorphous physical form. This is thought to be a result of intermolecular interactions between the different components, the presence of which was suggested by infrared spectroscopy. In vitro dissolution tests indicated that the fibers could provide targeted release of the active ingredients through a combined mechanism of erosion and diffusion. The proton relaxivities for Gd(DTPA) released from the fibers into tris buffer increased (r1 = 4.79–9.75 s–1 mM–1; r2 = 7.98–14.22 s–1 mM–1) compared with fresh Gd(DTPA) (r1 = 4.13 s–1 mM–1 and r2 = 4.40 s–1 mM–1), which proved that electrospinning has not diminished the contrast properties of the complex. The new systems reported herein thus offer a new platform for delivering therapeutic and imaging agents simultaneously to the colon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new method combining electrospinning of SPEEK and direct spinning of CNT forests has been used to prepare sulfonated poly(ether ether ketone) (SPEEK)/directly spinnable carbon nanotube (dsCNT) composite proton exchange membranes. The SPEEK/dsCNT membrane is more robust than SPEEK alone, and in a fuel cell significantly outperforms both SPEEK and the commercial Nafion 212 membranes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As nanofibras produzidas através de biopolímeros oriundos de materiais biológicos têm tomado espaço no âmbito mundial, estes podem ter sua origem em compostos como a proteína animal, por exemplo, as proteínas de pescado. O presente trabalho teve como objetivo geral desenvolver nanofibras de isolado proteico de Bijupirá (Rachycentron canadum). O isolado proteico de bijupirá (IPB) foi obtido utilizando processo de variação de pH para solubilizar e isolar proteínas. O IPB obtido foi caracterizado quanto sua composição química proximal e suas propriedades físicoquímicas, estruturais e funcionais. O rendimento do IPB foi de 98,17% de proteína, em base seca. A maior solubilidade e a maior capacidade de retenção de água (CRA) do IPB foram obtidas em pH 11 e 21,9 mL.g-1 de proteína, respectivamente. Os perfis eletroforéticos revelaram massas moleculares características de proteínas miofibrilares (miosina e actina). Os principais picos identificados pelas análises de Espectroscopia na Região do Infravermelho (FTIR) são provenientes de ligações peptídicas (ligações amida), como Amida I e II. Os maiores pontos de fusão e de degradação do IPB foram de 259,1°C e 378°C, respectivamente, obtendo assim, um isolado proteico com elevada estabilidade térmica. As nanofibras foram desenvolvidas pela técnica de electrospinnig. Foram preparadas soluções poliméricas utilizando 1% (p/v) de óxido de polietileno (PEO) e 1, 2, 3, 4, 5 e 6% (p/v) de IPB. Os parâmetros utilizados no processo de electrospinning como: potencial elétrico, distância da ponta do coletor a agulha e a taxa de fluxo da solução foram fixados em 16,7 kV, 15 cm, e 150 µL.h-1 , respectivamente. Os efeitos do solvente e a adição de um biopolímero comercial na capacidade de formação e morfologia das nanofibras foram estudados. Em relação ao efeito do solvente na solubilização das proteínas, o processo de electrospinning foi favorecido quando utilizado o ácido fórmico 85% (v/v), como este solvente orgânico promove a formação de estruturas helicoidais aleatórias e, consequentemente, um aumento no emaranhado de biopolímeros. A adição do biopolímero PEO proporcionou melhor viscosidade às soluções de IPB e o desenvolvimento das nanofibras. A morfologia analisada por Microscopia eletrônica de Varredura (MEV) das nanofibras obtidas com 5 e 4% (p/v) de IPB e 1% (/v) de PEO foi de 205 ± 82 nm e 476 ± 107, respectivamente.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

C-ficocianina (C-FC) é uma ficobiliproteína, de cor natural azul, com diversas aplicações na indústria alimentícia, farmacêutica e biomédica, dependendo do seu grau específico de pureza, que pode variar de 0,7 a 4,0, com respectivo aumento de seu valor comercial. Essa pureza é alcançada através de diversas técnicas de purificação, que podem ser aplicadas em diferentes sequências. Um destes processos de purificação de proteínas baseia-se na cromatografia de troca iônica, que utiliza trocadores que adsorvem as proteínas como resultado de interações iônicas entre a superfície da proteína e o trocador. Resinas e colunas de leito expandido podem ser utilizadas para aumentar a produtividade dessa técnica. É fundamental conhecer o perfil do processo de adsorção, para melhor aplicá-lo como ferramenta para o design e otimização de parâmetros operacionais. Outra tecnologia para o tratamento de biomoléculas é a ultrafiltração. Esta técnica é aplicável em larga escala, apresenta baixa complexidade de aplicação e pode ser realizada em condições brandas, minimizando o dano para o produto. Para aumentar a estabilidade da C-FC, e facilitar a sua aplicação, podem ser avaliadas técnicas recentes, não exploradas para este fim, como as nanofibras obtidas através do processo de electrospinning. Estas fibras possuem uma área superficial específica extremamente elevada devido a seu pequeno diâmetro. O objetivo deste trabalho foi avaliar parâmetros de adsorção e diferentes técnicas para purificação de C-ficocianina de Spirulina platensis e obter nanofibras poliméricas incorporadas de C-ficocianina. O trabalho foi dividido em quatro artigos. No primeiro artigo, foram avaliados os parâmetros e as isotermas de adsorção de C-ficocianina em resina de troca iônica para leito expandido Streamline® DEAE. Verificou-se que o maior coeficiente de partição foi obtido em pH 7,5, nas temperaturas de 15 e 25 °C. As isotermas de adsorção da Cficocianina foram bem representadas pelos modelos de Langmuir, de Freundlich e de Langmuir-Freundlich, sendo os valores estimados para Qm e Kd obtidos pela isoterma de Langmuir foram, respectivamente, 33,92 mg.mL-1 e 0,123 mg.mL-1, respectivamente. No segundo artigo foi avaliada a purificação de C-FC até grau alimentar, utilizando ultrafiltração (UF). Com a membrana de 50 kDa, identificou-se que somente a temperatura e a aplicação de diferentes ciclos de diafiltração (DF) causaram influência significativa sobre a purificação e recuperação da C-ficocianina. Foram então aplicados o aumento gradativo da quantidade de ciclos, e a diafiltração previamente à ultrafiltração (DF/UF), onde obteve-se um extrato de Cficocianina com pureza de 0,95. No terceiro artigo foram propostos processos de purificação, envolvendo a utilização das diferentes técnicas para obtenção de C-FC com diferentes purezas. Determinou-se que a partir de cromatografia de troca iônica em leito fixo seguido de DF/UF, obtém-se C-FC para uso em cosméticos e a partir de precipitação com sulfato de amônio, e DF/UF obtém-se C-FC para uso em biomarcadores. Com uma sequência de precipitação com sulfato de amônio, DF/UF e cromatografia de troca iônica em leito fixo chega-se a C-FC de grau analítico. No último artigo, C-FC foi incorporada a nanofibras de óxido de polietileno (PEO) através de processo de electrospinning. Foram determinadas a condutividade da solução de C-FC/PEO, a estrutura e comportamento termogravimétrico das nanofibras formadas. Soluções de polímeros com concentração de 6 e 8% proporcionaram a formação de nanofibras com diâmetro médio inferior a 800 nm, homogêneas, sem a presença de gotas. A análise termogravimétrica identificou aumento na resistência térmica da C-FC incorporada nas fibras.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pesquisas com microalgas estão crescendo devido aos possíveis bioprodutos oriundos de sua biomassa, bem como as suas diferentes aplicabilidades. Microalgas podem ser cultivadas para a produção de biopolímeros com características de biocompatibilidade e biodegradabilidade. Nanofibras produzidas por electrospinning a partir de poli-β-hidroxibutirato (PHB) geram produtos com aplicabilidade na área de alimentos e médica. O objetivo deste trabalho foi selecionar microalgas com maior potencial para síntese de biopolímeros, em diferentes meios de cultivo, bem como purificar poli-β-hidroxibutirato e desenvolver nanofibras. Este trabalho foi dividido em cinco artigos: (1) Seleção de microalgas produtoras de biopolímeros; (2) Produção de biopolímeros pela microalga Spirulina sp. LEB 18 em cultivo com diferentes fontes de carbono e redução de nitrogênio; (3) Síntese de biopolímeros pela microalga Spirulina sp. LEB 18 em cultivos autotróficos e mixotróficos; (4) Purificação de poli-β- hidroxibutirato extraído da microalga Spirulina sp. LEB 18; e (5) Produção de nanofibras a partir de poli-β-hidroxibutirato de origem microalgal. Foram estudadas as microalgas Cyanobium sp., Nostoc ellipsosporum, Spirulina sp. LEB 18 e Synechococcus nidulans. Os biopolímeros foram extraídos nos tempos de 5, 10, 15, 20 e 25 d de cultivo a partir de digestão diferencial. Para os experimentos com diferentes nutrientes, foi utilizado como fonte de carbono, bicarbonato de sódio, acetato de sódio, glicose e glicerina modificando-se as concentrações de nitrogênio e fósforo. Os cultivos foram realizados em fotobiorreatores fechados de 2 L. A concentração inicial de inóculo foi 0,15 g.L-1 e os ensaios foram mantidos em estufa termostatizada a 30 ºC com iluminância de 41,6 µmolfótons.m -2 .s -1 e fotoperíodo 12 h claro/escuro. Para a purificação de PHB, foi utilizada a biomassa da cianobactéria Spirulina sp. LEB 18, cultivada em meio Zarrouk. Após a extração do biopolímero bruto, a amostra foi desengordurada com hexano e purificada com 1,2-carbonato de propileno. Foram determinadas as purezas e as propriedades térmicas no PHB purificado. O biopolímero utilizado para produzir as nanofibras apresentava 70 % de pureza. A técnica para produção de nanofibras foi o electrospinning. As microalgas que apresentaram máxima produtividade foram Nostoc ellipsosporum e Spirulina sp. LEB 18 com rendimento de biopolímero 19,27 e 20,62 % em 10 e 15 d, respectivamente, na fase de máximo crescimento celular. O maior rendimento de biopolímeros (54,48 %) foi obtido quando se utilizou 8,4 g.L-1 de NaHCO3, 0,05 g.L-1 de NaNO3 e 0,1 g.L-1 de K2HPO4. A condição que proporcionou maior pureza do PHB foi a 130 ºC e 5 min de contato entre o solvente (1,2-carbonato de propileno) e o PHB. As análises térmicas para todas as amostras foram semelhantes em relação ao PHB padrão (Sigma-Aldrich). A purificação com 1,2-carbonato de propileno foi eficiente para o PHB extraído de microalga, alcançando pureza acima de 90 %. A condição que apresentou menores diâmetros de nanofibras foi ao utilizar solução contendo 20 % de biopolímero solubilizado em clorofórmio. As condições do electrospinning que apresentou nanofibras com diâmetros de 470 e 537 nm foram, vazão 150 µL.h-1 , diâmetro do capilar 0,45 mm e voltagens entre 24,1 e 29,6 kV, respectivamente. A microalga Spirulina sp. LEB 18 produz PHB ao utilizar menores concentrações de nutrientes no meio de cultivo, que pode ser purificado com 1,2-carbonato de propileno. Este biopolímero possui aplicabilidade para produção de nanofibras.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two VPO materials with fibrillar morphology have been prepared by the aid of electrospinning technique. One is a VPO carbon-supported material (VCF200) with fibrous morphology and very high surface area that is stable under oxidizing conditions up to 350C. The other material is a bulk mixed VPO oxide (VPO500) with fibrous structure obtained after optimizing the calcination of the carbon support in VCF200. Despite it is a bulk oxide material, this material exhibits a high surface area (> 60 m2/g). The redox behavior of both samples was monitored by in situ Raman spectroscopy under oxidation/reduction cycles. For the dehydrated supported sample (VCF200), the pyrophosphate phase (VO)2P2O7 (Raman ~930 cm-1) is detected, which has been described as the active phase (see Figure (a) below). This phase is quite stable since it does not disappear upon subsequent oxidation/reduction cycles. Under reduction conditions at 125C, in consecutive cycles, additional Raman bands appear at ~1090 cm-1 that are characteristic of the αII-VOPO4 phase. On the other hand, the bulk phases show a reversible behavior under redox cycles (Figure (b)). Under reducing conditions, a Raman band appears at ~980 cm-1 (β-VPO phase), whereas under oxidation conditions some segregation to VOx oxides occurs. Nevertheless, this segregation is reversible and the β-VPO phase forms again under reducing conditions. Thus, these results demonstrate that the active VPO phases of these fibrous catalysts are quite stable, and that their structure is reversible under several redox cycles, which make them suitable as oxidation catalysts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The polymorphism and crystallinity of poly(vinylidene fluoride) (PVDF) membranes, made from electrospinning of the PVDF in pure N,N-dimethylformamide (DMF) and DMF/acetone mixture solutions are studied. Influence of the processing and solution parameters such as flow rate, applied voltage, solvent system, and mixture ratio, on nanofiber morphology, total crystallinity, and crystal phase content of the nanofibers are investigated using scanning electron microscopy, wide-angle X-ray scattering, differential scanning calorimetric, and Fourier transform infrared spectroscopy. The results show that solutions of 20% w/w PVDF in two solvent systems of DMF and DMF/acetone (with volume ratios of 3/1 and 1/1) are electrospinnable; however, using DMF/acetone volume ratio of 1/3 led to blockage of the needle and spinning process was stopped. Very high fraction of β-phase (∼79%-85%) was obtained for investigated nanofiber, while degree of crystallinity increased to 59% which is quite high due to the strong influence of electrospinning on ordering the microstructure. Interestingly, ultrafine fibers with the diameter of 12 and 15 nm were obtained in this work. Uniform and bead free nanofiber was formed when a certain amount of acetone was added in to the electrospinning solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flexible sensors capable of detecting large strain are very useful for health monitoring and sport applications. Here a strain sensor is prepared by applying a thin layer of conducting polymer, polypyrrole (PPy), onto the fiber surface of an elastic fibrous membrane, electrospun polydimethylsiloxane (PDMS). The sensor shows a normal monotonic resistance response to strain in the range of 0–50%, but the response becomes “on-off switching” mode when the strain is between 100 and 200%. Both response modes are reversible and can work repeatedly for many cycles. This unique sensing behavior is attributed to overstretching of the polypyrrole coating, unique fibrous structure, and elasticity of PDMS fibers. It may be useful for monitoring the states where motions are only allowed in a particular range such as joint rehabilitation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Considerable interest has been devoted to converting mechanical energy into electricity using polymer nanofibres. In particular, piezoelectric nanofibres produced by electrospinning have shown remarkable mechanical energy-to-electricity conversion ability. However, there is little data for the acoustic-to-electric conversion of electrospun nanofibres. Here we show that electrospun piezoelectric nanofibre webs have a strong acoustic-to-electric conversion ability. Using poly(vinylidene fluoride) as a model polymer and a sensor device that transfers sound directly to the nanofibre layer, we show that the sensor devices can detect low-frequency sound with a sensitivity as high as 266 mV Pa(-1). They can precisely distinguish sound waves in low to middle frequency region. These features make them especially suitable for noise detection. Our nanofibre device has more than five times higher sensitivity than a commercial piezoelectric poly(vinylidene fluoride) film device. Electrospun piezoelectric nanofibres may be useful for developing high-performance acoustic sensors.