874 resultados para Dynamic data analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

For a long time, electronic data analysis has been associated with quantitative methods. However, Computer Assisted Qualitative Data Analysis Software (CAQDAS) are increasingly being developed. Although the CAQDAS has been there for decades, very few qualitative health researchers report using it. This may be due to the difficulties that one has to go through to master the software and the misconceptions that are associated with using CAQDAS. While the issue of mastering CAQDAS has received ample attention, little has been done to address the misconceptions associated with CAQDAS. In this paper, the author reflects on his experience of interacting with one of the popular CAQDAS (NVivo) in order to provide evidence-based implications of using the software. The key message is that unlike statistical software, the main function of CAQDAS is not to analyse data but rather to aid the analysis process, which the researcher must always remain in control of. In other words, researchers must equally know that no software can analyse qualitative data. CAQDAS are basically data management packages, which support the researcher during analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we further extend the recently developed adaptive data analysis method, the Sparse Time-Frequency Representation (STFR) method. This method is based on the assumption that many physical signals inherently contain AM-FM representations. We propose a sparse optimization method to extract the AM-FM representations of such signals. We prove the convergence of the method for periodic signals under certain assumptions and provide practical algorithms specifically for the non-periodic STFR, which extends the method to tackle problems that former STFR methods could not handle, including stability to noise and non-periodic data analysis. This is a significant improvement since many adaptive and non-adaptive signal processing methods are not fully capable of handling non-periodic signals. Moreover, we propose a new STFR algorithm to study intrawave signals with strong frequency modulation and analyze the convergence of this new algorithm for periodic signals. Such signals have previously remained a bottleneck for all signal processing methods. Furthermore, we propose a modified version of STFR that facilitates the extraction of intrawaves that have overlaping frequency content. We show that the STFR methods can be applied to the realm of dynamical systems and cardiovascular signals. In particular, we present a simplified and modified version of the STFR algorithm that is potentially useful for the diagnosis of some cardiovascular diseases. We further explain some preliminary work on the nature of Intrinsic Mode Functions (IMFs) and how they can have different representations in different phase coordinates. This analysis shows that the uncertainty principle is fundamental to all oscillating signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comunicação apresentada na 44th SEFI Conference, 12-­15 September 2016, Tampere, Finland

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analyzing large-scale gene expression data is a labor-intensive and time-consuming process. To make data analysis easier, we developed a set of pipelines for rapid processing and analysis poplar gene expression data for knowledge discovery. Of all pipelines developed, differentially expressed genes (DEGs) pipeline is the one designed to identify biologically important genes that are differentially expressed in one of multiple time points for conditions. Pathway analysis pipeline was designed to identify the differentially expression metabolic pathways. Protein domain enrichment pipeline can identify the enriched protein domains present in the DEGs. Finally, Gene Ontology (GO) enrichment analysis pipeline was developed to identify the enriched GO terms in the DEGs. Our pipeline tools can analyze both microarray gene data and high-throughput gene data. These two types of data are obtained by two different technologies. A microarray technology is to measure gene expression levels via microarray chips, a collection of microscopic DNA spots attached to a solid (glass) surface, whereas high throughput sequencing, also called as the next-generation sequencing, is a new technology to measure gene expression levels by directly sequencing mRNAs, and obtaining each mRNA’s copy numbers in cells or tissues. We also developed a web portal (http://sys.bio.mtu.edu/) to make all pipelines available to public to facilitate users to analyze their gene expression data. In addition to the analyses mentioned above, it can also perform GO hierarchy analysis, i.e. construct GO trees using a list of GO terms as an input.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thanks to the advanced technologies and social networks that allow the data to be widely shared among the Internet, there is an explosion of pervasive multimedia data, generating high demands of multimedia services and applications in various areas for people to easily access and manage multimedia data. Towards such demands, multimedia big data analysis has become an emerging hot topic in both industry and academia, which ranges from basic infrastructure, management, search, and mining to security, privacy, and applications. Within the scope of this dissertation, a multimedia big data analysis framework is proposed for semantic information management and retrieval with a focus on rare event detection in videos. The proposed framework is able to explore hidden semantic feature groups in multimedia data and incorporate temporal semantics, especially for video event detection. First, a hierarchical semantic data representation is presented to alleviate the semantic gap issue, and the Hidden Coherent Feature Group (HCFG) analysis method is proposed to capture the correlation between features and separate the original feature set into semantic groups, seamlessly integrating multimedia data in multiple modalities. Next, an Importance Factor based Temporal Multiple Correspondence Analysis (i.e., IF-TMCA) approach is presented for effective event detection. Specifically, the HCFG algorithm is integrated with the Hierarchical Information Gain Analysis (HIGA) method to generate the Importance Factor (IF) for producing the initial detection results. Then, the TMCA algorithm is proposed to efficiently incorporate temporal semantics for re-ranking and improving the final performance. At last, a sampling-based ensemble learning mechanism is applied to further accommodate the imbalanced datasets. In addition to the multimedia semantic representation and class imbalance problems, lack of organization is another critical issue for multimedia big data analysis. In this framework, an affinity propagation-based summarization method is also proposed to transform the unorganized data into a better structure with clean and well-organized information. The whole framework has been thoroughly evaluated across multiple domains, such as soccer goal event detection and disaster information management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transport Certification Australia Limited, jointly with the National Transport Commission, has undertaken a project to investigate the feasibility of on-board mass monitoring (OBM) devices for regulatory purposes. OBM increases jurisdictional confidence in operational heavy vehicle compliance. This paper covers technical issues regarding potential use of dynamic data from OBM systems to indicate that tampering has occurred. Tamper-evidence and accuracy of current OBM systems needed to be determined before any regulatory schemes were put in place for its use. Tests performed to determine potential for, and ease of, tampering. An algorithm was developed to detect tamper events. Its results are detailed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the temporal dynamics and changes in connectivity in the mental rotation network through the application of spatio-temporal support vector machines (SVMs). The spatio-temporal SVM [Mourao-Miranda, J., Friston, K. J., et al. (2007). Dynamic discrimination analysis: A spatial-temporal SVM. Neuroimage, 36, 88-99] is a pattern recognition approach that is suitable for investigating dynamic changes in the brain network during a complex mental task. It does not require a model describing each component of the task and the precise shape of the BOLD impulse response. By defining a time window including a cognitive event, one can use spatio-temporal fMRI observations from two cognitive states to train the SVM. During the training, the SVM finds the discriminating pattern between the two states and produces a discriminating weight vector encompassing both voxels and time (i.e., spatio-temporal maps). We showed that by applying spatio-temporal SVM to an event-related mental rotation experiment, it is possible to discriminate between different degrees of angular disparity (0 degrees vs. 20 degrees, 0 degrees vs. 60 degrees, and 0 degrees vs. 100 degrees), and the discrimination accuracy is correlated with the difference in angular disparity between the conditions. For the comparison with highest accuracy (08 vs. 1008), we evaluated how the most discriminating areas (visual regions, parietal regions, supplementary, and premotor areas) change their behavior over time. The frontal premotor regions became highly discriminating earlier than the superior parietal cortex. There seems to be a parcellation of the parietal regions with an earlier discrimination of the inferior parietal lobe in the mental rotation in relation to the superior parietal. The SVM also identified a network of regions that had a decrease in BOLD responses during the 100 degrees condition in relation to the 0 degrees condition (posterior cingulate, frontal, and superior temporal gyrus). This network was also highly discriminating between the two conditions. In addition, we investigated changes in functional connectivity between the most discriminating areas identified by the spatio-temporal SVM. We observed an increase in functional connectivity between almost all areas activated during the 100 degrees condition (bilateral inferior and superior parietal lobe, bilateral premotor area, and SMA) but not between the areas that showed a decrease in BOLD response during the 100 degrees condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

KEEP CLEAR pavement markings are widely used at urban signalised intersections to indicate to drivers to avoid entering blocked intersections. For example, ‘Box junctions’ are most widely used in the United Kingdom and other European countries. However, in Australia, KEEP CLEAR markings are mostly used to improve access from side roads onto a main road, especially when the side road is very close to a signalised intersection. This paper aims to reveal how the KEEP CLEAR markings affect the dynamic performance of the queuing vehicles on the main road, where the side road access is near a signalised intersection. Raw traffic field data was collected from an intersection at the Gold Coast, Australia, and the Kanade–Lucas–Tomasi (KLT) feature tracker approach was used to extract dynamic vehicle data from the raw video footage. The data analysis reveals that the KEEP CLEAR markings generate positive effects on the queuing vehicles in discharge on the main road. This finding refutes the traditional viewpoint that the KEEP CLEAR pavement markings will cause delay for the queuing vehicles’ departure due to the enlarged queue spacing. Further studies are suggested in this paper as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The efficiency of generation plants is an important measure for evaluating the operating performance. The objective of this paper is to evaluate electricity power generation by conducting an All-Island-Generator-Efficiency-Study (AIGES) for the Republic of Ireland and Northern Ireland by utilising a Data Envelopment Analysis (DEA) approach. An operational performance efficiency index is defined and pursued for the year 2008. The economic activities of electricity generation units/plants examined in this paper are characterized by numerous input and output indicators. Constant returns to scale (CRS) and variable returns to scale (VRS) type DEA models are employed in the analysis. Also a slacks based analysis indicates the level of inefficiency for each variable examined. The findings from this study provide a general ranking and evaluation but also facilitate various interesting efficiency comparisons between generators by fuel type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent interest in the validation of general circulation models (GCMs) has been devoted to objective methods. A small number of authors have used the direct synoptic identification of phenomena together with a statistical analysis to perform the objective comparison between various datasets. This paper describes a general method for performing the synoptic identification of phenomena that can be used for an objective analysis of atmospheric, or oceanographic, datasets obtained from numerical models and remote sensing. Methods usually associated with image processing have been used to segment the scene and to identify suitable feature points to represent the phenomena of interest. This is performed for each time level. A technique from dynamic scene analysis is then used to link the feature points to form trajectories. The method is fully automatic and should be applicable to a wide range of geophysical fields. An example will be shown of results obtained from this method using data obtained from a run of the Universities Global Atmospheric Modelling Project GCM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the outlook of improving seismic vulnerability assessment for the city of Bishkek (Kyrgyzstan), the global dynamic behaviour of four nine-storey r.c. large-panel buildings in elastic regime is studied. The four buildings were built during the Soviet era within a serial production system. Since they all belong to the same series, they have very similar geometries both in plan and in height. Firstly, ambient vibration measurements are performed in the four buildings. The data analysis composed of discrete Fourier transform, modal analysis (frequency domain decomposition) and deconvolution interferometry, yields the modal characteristics and an estimate of the linear impulse response function for the structures of the four buildings. Then, finite element models are set up for all four buildings and the results of the numerical modal analysis are compared with the experimental ones. The numerical models are finally calibrated considering the first three global modes and their results match the experimental ones with an error of less then 20%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this retrospective study is to follow up on a previous Dynamic Smile Analysis and videographically analyze and develop averages for soft tissue norms with respect to the display of dentition during speech. These values would then be compared cross-sectionally across different age groups to see whether changes attributable to the aging process could be seen. A secondary objective was to compare averages for soft tissue norms in the display of dentition during speech to averages for soft tissue norms in the display of dentition during the smile. Materials and Method: Records from a previous study in which video equipment was used to capture video for 26 1 subjects were re-evaluated to find appropriate frames to analyze for speech. Two frames for each subject were selected; one frame representing the maximal display of maxillary incisors during speech and the second representing the widest transverse display of dentition during speech. After excluding 40 subjects the data for the remaining 221 subjects was analyzed. These averages were then compared to averages attained in the previous study to compare the display of the dentition during speech to the display of the dentition during smile. Results: On average, a difference in 1.29 mm was seen in the display of the maxillary incisors during speech at maximal display and during the smile. An average of 7.23 mm of maxillary incisors is readily visible during maximum display of maxillary incisors during speech, as compared to 8.52 mm during the smile. The constructed smile index was also smaller when measured during the speech when compared to the smile index by an average of 2.58 units. Conclusion: This study helps to establish age-related dynamic norms for the display of dentition during speech. The dynamic measures indicate that the display of dectition is greater, on average, during the smile than at speech.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the exponential growth of the usage of web-based map services, the web GIS application has become more and more popular. Spatial data index, search, analysis, visualization and the resource management of such services are becoming increasingly important to deliver user-desired Quality of Service. First, spatial indexing is typically time-consuming and is not available to end-users. To address this, we introduce TerraFly sksOpen, an open-sourced an Online Indexing and Querying System for Big Geospatial Data. Integrated with the TerraFly Geospatial database [1-9], sksOpen is an efficient indexing and query engine for processing Top-k Spatial Boolean Queries. Further, we provide ergonomic visualization of query results on interactive maps to facilitate the user’s data analysis. Second, due to the highly complex and dynamic nature of GIS systems, it is quite challenging for the end users to quickly understand and analyze the spatial data, and to efficiently share their own data and analysis results with others. Built on the TerraFly Geo spatial database, TerraFly GeoCloud is an extra layer running upon the TerraFly map and can efficiently support many different visualization functions and spatial data analysis models. Furthermore, users can create unique URLs to visualize and share the analysis results. TerraFly GeoCloud also enables the MapQL technology to customize map visualization using SQL-like statements [10]. Third, map systems often serve dynamic web workloads and involve multiple CPU and I/O intensive tiers, which make it challenging to meet the response time targets of map requests while using the resources efficiently. Virtualization facilitates the deployment of web map services and improves their resource utilization through encapsulation and consolidation. Autonomic resource management allows resources to be automatically provisioned to a map service and its internal tiers on demand. v-TerraFly are techniques to predict the demand of map workloads online and optimize resource allocations, considering both response time and data freshness as the QoS target. The proposed v-TerraFly system is prototyped on TerraFly, a production web map service, and evaluated using real TerraFly workloads. The results show that v-TerraFly can accurately predict the workload demands: 18.91% more accurate; and efficiently allocate resources to meet the QoS target: improves the QoS by 26.19% and saves resource usages by 20.83% compared to traditional peak load-based resource allocation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Min/max autocorrelation factor analysis (MAFA) and dynamic factor analysis (DFA) are complementary techniques for analysing short (> 15-25 y), non-stationary, multivariate data sets. We illustrate the two techniques using catch rate (cpue) time-series (1982-2001) for 17 species caught during trawl surveys off Mauritania, with the NAO index, an upwelling index, sea surface temperature, and an index of fishing effort as explanatory variables. Both techniques gave coherent results, the most important common trend being a decrease in cpue during the latter half of the time-series, and the next important being an increase during the first half. A DFA model with SST and UPW as explanatory variables and two common trends gave good fits to most of the cpue time-series. (c) 2004 International Council for the Exploration of the Sea. Published by Elsevier Ltd. All rights reserved.