947 resultados para Dynamic Energy Budget
Resumo:
The past decade has seen the energy consumption in servers and Internet Data Centers (IDCs) skyrocket. A recent survey estimated that the worldwide spending on servers and cooling have risen to above $30 billion and is likely to exceed spending on the new server hardware . The rapid rise in energy consumption has posted a serious threat to both energy resources and the environment, which makes green computing not only worthwhile but also necessary. This dissertation intends to tackle the challenges of both reducing the energy consumption of server systems and by reducing the cost for Online Service Providers (OSPs). Two distinct subsystems account for most of IDC’s power: the server system, which accounts for 56% of the total power consumption of an IDC, and the cooling and humidifcation systems, which accounts for about 30% of the total power consumption. The server system dominates the energy consumption of an IDC, and its power draw can vary drastically with data center utilization. In this dissertation, we propose three models to achieve energy effciency in web server clusters: an energy proportional model, an optimal server allocation and frequency adjustment strategy, and a constrained Markov model. The proposed models have combined Dynamic Voltage/Frequency Scaling (DV/FS) and Vary-On, Vary-off (VOVF) mechanisms that work together for more energy savings. Meanwhile, corresponding strategies are proposed to deal with the transition overheads. We further extend server energy management to the IDC’s costs management, helping the OSPs to conserve, manage their own electricity cost, and lower the carbon emissions. We have developed an optimal energy-aware load dispatching strategy that periodically maps more requests to the locations with lower electricity prices. A carbon emission limit is placed, and the volatility of the carbon offset market is also considered. Two energy effcient strategies are applied to the server system and the cooling system respectively. With the rapid development of cloud services, we also carry out research to reduce the server energy in cloud computing environments. In this work, we propose a new live virtual machine (VM) placement scheme that can effectively map VMs to Physical Machines (PMs) with substantial energy savings in a heterogeneous server cluster. A VM/PM mapping probability matrix is constructed, in which each VM request is assigned with a probability running on PMs. The VM/PM mapping probability matrix takes into account resource limitations, VM operation overheads, server reliability as well as energy effciency. The evolution of Internet Data Centers and the increasing demands of web services raise great challenges to improve the energy effciency of IDCs. We also express several potential areas for future research in each chapter.
Resumo:
Fuel Cells are a promising alternative energy technology. One of the biggest problems that exists in fuel cell is that of water management. A better understanding of wettability characteristics in the fuel cells is needed to alleviate the problem of water management. Contact angle data on gas diffusion layers (GDL) of the fuel cells can be used to characterize the wettability of GDL in fuel cells. A contact angle measurement program has been developed to measure the contact angle of sessile drops from drop images. Digitization of drop images induces pixel errors in the contact angle measurement process. The resulting uncertainty in contact angle measurement has been analyzed. An experimental apparatus has been developed for contact angle measurements at different temperature, with the feature to measure advancing and receding contact angles on gas diffusion layers of fuel cells.
Resumo:
This thesis studies the minimization of the fuel consumption for a Hybrid Electric Vehicle (HEV) using Model Predictive Control (MPC). The presented MPC – based controller calculates an optimal sequence of control inputs to a hybrid vehicle using the measured plant outputs, the current dynamic states, a system model, system constraints, and an optimization cost function. The MPC controller is developed using Matlab MPC control toolbox. To evaluate the performance of the presented controller, a power-split hybrid vehicle, 2004 Toyota Prius, is selected. The vehicle uses a planetary gear set to combine three power components, an engine, a motor, and a generator, and transfer energy from these components to the vehicle wheels. The planetary gear model is developed based on the Willis’s formula. The dynamic models of the engine, the motor, and the generator, are derived based on their dynamics at the planetary gear. The MPC controller for HEV energy management is validated in the MATLAB/Simulink environment. Both the step response performance (a 0 – 60 mph step input) and the driving cycle tracking performance are evaluated. Two standard driving cycles, Urban Dynamometer Driving Schedule (UDDS) and Highway Fuel Economy Driving Schedule (HWFET), are used in the evaluation tests. For the UDDS and HWFET driving cycles, the simulation results, the fuel consumption and the battery state of charge, using the MPC controller are compared with the simulation results using the original vehicle model in Autonomie. The MPC approach shows the feasibility to improve vehicle performance and minimize fuel consumption.
Resumo:
This document will demonstrate the methodology used to create an energy and conductance based model for power electronic converters. The work is intended to be a replacement for voltage and current based models which have limited applicability to the network nodal equations. Using conductance-based modeling allows direct application of load differential equations to the bus admittance matrix (Y-bus) with a unified approach. When applied directly to the Y-bus, the system becomes much easier to simulate since the state variables do not need to be transformed. The proposed transformation applies to loads, sources, and energy storage systems and is useful for DC microgrids. Transformed state models of a complete microgrid are compared to experimental results and show the models accurately reflect the system dynamic behavior.
Resumo:
At the Chair of Logistics Engineering, TU Dresden, a particular focus is research and development of magnetic traction sheaves. Therein the main fundamentals of these special sheaves are determined for applications in different fields such as elevators, several kinds of winches, hoists and cranes. In the current research project “energy balance of magnetic traction sheaves”, the dynamic behaviour of systems with magnetic traction sheaves was investigated. The research focused on theoretical and practical examinations of energy balance. Moreover, a new approach for dimensioning magnetic traction sheave systems is presented. It is a project of the Research Foundation Intralogistics / Material Handling and Logistics (IFL), which is funded through the AiF under the program of Industrial Collective Research for SMEs (IGF) by the Federal Ministry of Economics and Technology (BMWi).
Resumo:
Cost-efficient operation while satisfying performance and availability guarantees in Service Level Agreements (SLAs) is a challenge for Cloud Computing, as these are potentially conflicting objectives. We present a framework for SLA management based on multi-objective optimization. The framework features a forecasting model for determining the best virtual machine-to-host allocation given the need to minimize SLA violations, energy consumption and resource wasting. A comprehensive SLA management solution is proposed that uses event processing for monitoring and enables dynamic provisioning of virtual machines onto the physical infrastructure. We validated our implementation against serveral standard heuristics and were able to show that our approach is significantly better.
Resumo:
Prompt gamma activation analysis (PGAA) is especially sensitive for elements with high neutron-capture cross sections, like boron, which can be detected down to a level of ng/g. However, if it is a major component, the high count rate from its signal will distort the spectra, making the evaluation difficult. A lead attenuator was introduced in front of the HPGe-detector to reduce low-energy gamma radiation and specifically the boron gamma rays reaching the detector, whose thickness was found to be optimal at 10 mm. Detection efficiencies with and without the lead attenuator were compared, and it was shown that the dynamic range of the PGAA technique was significantly increased. The method was verified with the analyses of stoichiometric compounds: TiB2, NiB, PVC, Alborex, and Alborite.
Resumo:
The paper analyzes how to comply with an emission constraint, which restricts the use of an established energy technique, given the two options to save energy and to invest in two alternative energy techniques. These techniques differ in their deterioration rates and the investment lags of the corresponding capital stocks. Thus, the paper takes a medium-term perspective on climate change mitigation, where the time horizon is too short for technological change to occur, but long enough for capital stocks to accumulate and deteriorate. It is shown that, in general, only one of the two alternative techniques prevails in the stationary state, although, both techniques might be utilized during the transition phase. Hence, while in a static economy only one technique is efficient, this is not necessarily true in a dynamic economy.
Resumo:
Accurate assessments of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics, while emissions from Land-Use Change (ELUC), including deforestation, are based on combined evidence from land cover change data, fire activity in regions undergoing deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. Finally, the global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms. For the last decade available (2002–2011), EFF was 8.3 ± 0.4 PgC yr−1, ELUC 1.0 ± 0.5 PgC yr−1, GATM 4.3 ± 0.1 PgC yr−1, SOCEAN 2.5 ± 0.5 PgC yr−1, and SLAND 2.6 ± 0.8 PgC yr−1. For year 2011 alone, EFF was 9.5 ± 0.5 PgC yr−1, 3.0 percent above 2010, reflecting a continued trend in these emissions; ELUC was 0.9 ± 0.5 PgC yr−1, approximately constant throughout the decade; GATM was 3.6 ± 0.2 PgC yr−1, SOCEAN was 2.7 ± 0.5 PgC yr−1, and SLAND was 4.1 ± 0.9 PgC yr−1. GATM was low in 2011 compared to the 2002–2011 average because of a high uptake by the land probably in response to natural climate variability associated to La Niña conditions in the Pacific Ocean. The global atmospheric CO2 concentration reached 391.31 ± 0.13 ppm at the end of year 2011. We estimate that EFF will have increased by 2.6% (1.9–3.5%) in 2012 based on projections of gross world product and recent changes in the carbon intensity of the economy. All uncertainties are reported as ±1 sigma (68% confidence assuming Gaussian error distributions that the real value lies within the given interval), reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. This paper is intended to provide a baseline to keep track of annual carbon budgets in the future.
Resumo:
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. Based on energy statistics, we estimate that the global emissions of CO2 from fossil fuel combustion and cement production were 9.5 ± 0.5 PgC yr−1 in 2011, 3.0 percent above 2010 levels. We project these emissions will increase by 2.6% (1.9–3.5%) in 2012 based on projections of Gross World Product and recent changes in the carbon intensity of the economy. Global net CO2 emissions from Land-Use Change, including deforestation, are more difficult to update annually because of data availability, but combined evidence from land cover change data, fire activity in regions undergoing deforestation and models suggests those net emissions were 0.9 ± 0.5 PgC yr−1 in 2011. The global atmospheric CO2 concentration is measured directly and reached 391.38 ± 0.13 ppm at the end of year 2011, increasing 1.70 ± 0.09 ppm yr−1 or 3.6 ± 0.2 PgC yr−1 in 2011. Estimates from four ocean models suggest that the ocean CO2 sink was 2.6 ± 0.5 PgC yr−1 in 2011, implying a global residual terrestrial CO2 sink of 4.1 ± 0.9 PgC yr−1. All uncertainties are reported as ±1 sigma (68% confidence assuming Gaussian error distributions that the real value lies within the given interval), reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. This paper is intended to provide a baseline to keep track of annual carbon budgets in the future.
Resumo:
Although beryllium-10 (10Be) concentrations in stream sediments provide useful synoptic views of catchment-wide erosion rates, little is known on the relative contributions of different sediment supply mechanisms to the acquisition of their initial signature in the headwaters. Here we address this issue by conducting a 10Be-budget of detrital materials that characterize the morphogenetic domains representative of high-altitude environments of the European Alps. We focus on the Etages catchment, located in the Ecrins-Pelvoux massif (southeast France), and illustrate how in situ 10Be concentrations can be used for tracing the origin of the sand fraction from the bedload in the trunk stream. The landscape of the Etages catchment is characterized by a geomorphic transient state, high topographic gradients, and a large variety of modern geomorphic domains ranging from glacial environments to scarcely vegetated alluvial plains. Beryllium-10 concentrations measured in the Etages catchment vary from similar to 1 x 104 to 4.5 x 105 atoms per gram quartz, while displaying consistent 10Be signatures within each representative morphogenetic unit. We show that the basic requirements for inferring catchment-wide denudation from 10Be concentration measurements are not satisfied in this small, dynamic catchment. However, the distinct 10Be signature observed for the geomorphic domains can be used as a tracer. We suggest that a terrestrial cosmogenic nuclide (TCN) budget approach provides a valuable tool for the tracing of material origin in basins where the let nature do the averaging' principles may be violated.
Resumo:
Osteoporotic proximal femur fractures are caused by low energy trauma, typically when falling on the hip from standing height. Finite element simulations, widely used to predict the fracture load of femora in fall, usually include neither mass-related inertial effects, nor the viscous part of bone's material behavior. The aim of this study was to elucidate if quasi-static non-linear homogenized finite element analyses can predict in vitro mechanical properties of proximal femora assessed in dynamic drop tower experiments. The case-specific numerical models of thirteen femora predicted the strength (R2=0.84, SEE=540 N, 16.2%), stiffness (R2=0.82, SEE=233 N/mm, 18.0%) and fracture energy (R2=0.72, SEE=3.85 J, 39.6%); and provided fair qualitative matches with the fracture patterns. The influence of material anisotropy was negligible for all predictions. These results suggest that quasi-static homogenized finite element analysis may be used to predict mechanical properties of proximal femora in the dynamic sideways fall situation.
Resumo:
More than a century ago Ramon y Cajal pioneered the description of neural circuits. Currently, new techniques are being developed to streamline the characterization of entire neural circuits. Even if this 'connectome' approach is successful, it will represent only a static description of neural circuits. Thus, a fundamental question in neuroscience is to understand how information is dynamically represented by neural populations. In this thesis, I studied two main aspects of dynamical population codes. ^ First, I studied how the exposure or adaptation, for a fraction of a second to oriented gratings dynamically changes the population response of primary visual cortex neurons. The effects of adaptation to oriented gratings have been extensively explored in psychophysical and electrophysiological experiments. However, whether rapid adaptation might induce a change in the primary visual cortex's functional connectivity to dynamically impact the population coding accuracy is currently unknown. To address this issue, we performed multi-electrode recordings in primary visual cortex, where adaptation has been previously shown to induce changes in the selectivity and response amplitude of individual neurons. We found that adaptation improves the population coding accuracy. The improvement was more prominent for iso- and orthogonal orientation adaptation, consistent with previously reported psychophysical experiments. We propose that selective decorrelation is a metabolically inexpensive mechanism that the visual system employs to dynamically adapt the neural responses to the statistics of the input stimuli to improve coding efficiency. ^ Second, I investigated how ongoing activity modulates orientation coding in single neurons, neural populations and behavior. Cortical networks are never silent even in the absence of external stimulation. The ongoing activity can account for up to 80% of the metabolic energy consumed by the brain. Thus, a fundamental question is to understand the functional role of ongoing activity and its impact on neural computations. I studied how the orientation coding by individual neurons and cell populations in primary visual cortex depend on the spontaneous activity before stimulus presentation. We hypothesized that since the ongoing activity of nearby neurons is strongly correlated, it would influence the ability of the entire population of orientation-selective cells to process orientation depending on the prestimulus spontaneous state. Our findings demonstrate that ongoing activity dynamically filters incoming stimuli to shape the accuracy of orientation coding by individual neurons and cell populations and this interaction affects behavioral performance. In summary, this thesis is a contribution to the study of how dynamic internal states such as rapid adaptation and ongoing activity modulate the population code accuracy. ^
Resumo:
There is increasing evidence that different light intensities strongly modulate the effects of ocean acidification (OA) on marine phytoplankton. The aim of the present study was to investigate interactive effects of OA and dynamic light, mimicking natural mixing regimes. The Antarctic diatom Chaetoceros debilis was grown under two pCO2 (390 and 1000 latm) and light conditions (constant and dynamic), the latter yielding the same integrated irradiance over the day. To characterize interactive effects between treatments, growth, elemental composition, primary production and photophysiology were investigated. Dynamic light reduced growth and strongly altered the effects of OA on primary production, being unaffected by elevated pCO2 under constant light, yet significantly reduced under dynamic light. Interactive effects between OA and light were also observed for Chl production and particulate organic carbon (POC) quotas. Response patterns can be explained by changes in the cellular energetic balance. While the energy transfer efficiency from photochemistry to biomass production (Phi_e,C) was not affected by OA under constant light, it was drastically reduced under dynamic light. Contrasting responses under different light conditions need to be considered when making predictions regarding a more stratified and acidified future ocean.