977 resultados para Double strand break
Resumo:
Modulation of tumor hypoxia to increase bioreductive drug antitumor activity was investigated. The antivascular agent 5,6-dimethylxanthenone acetic acid (DMXAA) was used in combination studies with the bioreductive drugs Tirapazamine (TPZ) and Mitomycin C (MMC). Blood perfusion studies with DMXAA showed a maximal reduction of 66% in tumor blood flow 4 hours post drug administration. This tumor specific decrease in perfusion was also found to be dose-dependent, with 25 and 30 mg/kg DMXAA yielding greater than 50% reduction in tumor blood flow. Increases in antitumor activity with combination therapy (bioreductive drugs $+$ DMXAA) were significant over individual therapies, suggesting an increased activity due to increased hypoxia induced by DMXAA. Combination studies yielded the following significant tumor growth delays over control: MMC (5mg/kg) $+$ DMXAA (25mg/kg) = 20 days, MMC (2.5mg/kg) $+$ DMXAA (25 mg/kg) = 8 days, TPZ (21.4mg/kg) $+$ DMXAA (17.5mg/kg) = 4 days. The mechanism of interaction of these drugs was investigated by measuring metabolite production and DNA damage. 'Real time' microdialysis studies indicated maximal metabolite production at 20-30 minutes post injection for individual and combination therapies. DNA double strand breaks induced by TPZ $\pm$ DMXAA (20 minutes post injection) were analyzed by pulsed field gel electrophoresis (PFGE). Southern blot analyses and quantification showed TPZ induced DNA double strand breaks, but this effect was not evident in combination studies with DMXAA. Based on these data, combination studies of TPZ $+$ DMXAA showed increased antitumor activity over individual drug therapies. The mechanism of this increased activity, however, does not appear to be due to an increase in TPZ bioreduction at this time point. ^
Resumo:
FUS/TLS (fused in sarcoma/translocated in liposarcoma) is a ubiquitously expressed RNA-binding protein of the hnRNP family, that has been discovered as fused to transcription factors, through chromosomal translocations, in several human sarcomas and found in protein aggregates in neurons of patients with an inherited form of Amyotrophic Lateral Sclerosis (ALS) [1]. To date, FUS/TLS has been implicated in a variety of cellular processes such as gene expression control, transcriptional regulation, pre-mRNA splicing and miRNA processing [2]. In addition, some evidences link FUS/TLS to genome stability control and DNA damage response. In fact, mice lacking FUS/TLS are hypersensitive to ionizing radiation (IR) and show high levels of chromosome instability and in response to double-strand breaks, FUS/TLS gets phosphorylated by the protein kinase ATM [3,4,5]. Furthermore, the inducible depletion of FUS/TLS in a neuroblastoma cell line (SH-SY5Y FUS/TLS TET-off iKD) subjected to genotoxic stress (IR) resulted in an increased phosphorylation of γH2AX respect to control cells, suggesting an higher activation of the DNA damage response. The study aims to investigate the specific role of FUS/TLS in DNA damage response through the characterization of the proteomic profile of SH-SY5Y FUS/TLS iKD cells subjected to DNA damage stress, by mass spectrometry-based quantitative proteomics (e.g. SILAC). Preliminary results of mass spectrometric identification of FUS/TLS interacting proteins in HEK293 cells, expressing a recombinant flag-tagged FUS/TLS protein, highlighted the interactions with several proteins involved in DNA damage response, such as DNA-PK, XRCC-5/-6, and ERCC-6, raising the possibilities that FUS/TLS is involved in this pathway, even thou its exact role still need to be addressed.
Resumo:
FUS/TLS (fused in sarcoma/translocated in liposarcoma) is a ubiquitously expressed protein of the hnRNP family, that has been discovered as fused to transcription factors in several human sarcomas and found in protein aggregates in neurons of patients with an inherited form of Amyotrophic Lateral Sclerosis [Vance C. et al., 2009]. FUS is a 53 kDa nuclear protein that contains structural domains, such as a RNA Recognition Motif (RRM) and a zinc finger motif, that give to FUS the ability to bind to both RNA and DNA sequences. It has been implicated in a variety of cellular processes, such as pre-mRNA splicing, miRNA processing, gene expression control and transcriptional regulation [Fiesel FC. and Kahle PJ., 2011]. Moreover, some evidences link FUS to genome stability control and DNA damage response: mice lacking FUS are hypersensitive to ionizing radiation (IR) and show high levels of chromosome instability and, in response to double-strand breaks, FUS is phosphorylated by the protein kinase ATM [Kuroda M. et al., 2000; Hicks GG. et al., 2000; Gardiner M. et al., 2008]. Furthermore, preliminary results of mass spectrometric identification of FUS interacting proteins in HEK293 cells, expressing a recombinant flag-tagged FUS protein, highlighted the interactions with proteins involved in DNA damage response, such as DNA-PK, XRCC-5/-6, and ERCC-6, raising the possibilities that FUS is involved in this pathway, even though its role still needs to be clarified. This study aims to investigate the biological roles of FUS in human cells and in particular the putative role in DNA damage response through the characterization of the proteomic profile of the neuroblastoma cell line SH-SY5Y upon FUS inducible depletion, by a quantitative proteomic approach. The SH-SY5Y cell line that will be used in this study expresses, in presence of tetracycline, a shRNA that targets FUS mRNA, leading to FUS protein depletion (SH-SY5Y FUS iKD cells). To quantify changes in proteins expression levels a SILAC strategy (Stable Isotope Labeling by Amino acids in Cell culture) will be conducted on SH-SY5Y FUS iKD cells and a control SH-SY5Y cell line (that expresses a mock shRNA) and the relative changes in proteins levels will be evaluated after five and seven days upon FUS depletion, by nanoliquid chromatography coupled to tandem mass spectrometry (nLC-MS/MS) and bioinformatics analysis. Preliminary experiments demonstrated that the SH-SY5Y FUS iKD cells, when subjected to genotoxic stress (high dose of IR), upon inducible depletion of FUS, showed a increased phosphorylation of gH2AX with respect to control cells, suggesting an higher activation of the DNA damage response.
Resumo:
FUS/TLS (fused in sarcoma/translocated in liposarcoma) is a ubiquitously expressed RNA-binding protein, that has been discovered as fused to transcription factors in several human sarcomas and found in protein aggregates in neurons of patients with an inherited form of Amyotrophic Lateral Sclerosis [1]. To date, FUS has been implicated in a variety of cellular processes such as gene expression control, transcriptional regulation, pre-mRNA splicing and miRNA processing [2]. In addition, some evidences link FUS to genome stability control and DNA damage response. In fact, mice lacking FUS are hypersensitive to ionizing radiation and show high levels of chromosome instability and in response to double-strand breaks, FUS gets phosphorylated by the protein kinase ATM [3, 4, 5]. Moreover, upon DNA damage stress, FUS mediates Ebp1 (ErbB3 receptor-binding protein) SUMOylation, a post-translational modification that is required for its onco-suppressive activity, by acting as SUMO E3 ligase [6]. The study aims to investigate the role of FUS in DNA damage response and SUMOylation, two cellular pathways tightly interconnected to each other. Moreover, we will exploit biochemical and mass spectrometry-based approaches in order to identify other potential substrates of the E3 SUMO ligase activity of FUS. Preliminary results of mass spectrometric identification of FUS interacting proteins, in HEK293 and SHSY5Y cells, highlighted the interaction of FUS with several proteins involved in DNA damage response and many of those have been described already as target of SUMOylation, such as XRCC5, DDX5, PARP1, Nucleophosmin, and others. These evidences strengthen the hypothesis that FUS might represent a link between these pathways, even thou its exact role still needs to be clearly addressed. [1] Vance C. et al. (2009) Science 323(5918): p. 1208-11 [2] Fiesel FC., Kahle PJ. (2011) FEBS J. 278(19): p. 3550-68 [3] Kuroda M. et al. (2000) Embo J. 19(3): p. 453-62 [4] Hicks GG. et al. (2000) Nat Genet. 24(2):p. 175-9 [5] Gardiner M. et al. (2008) Biochem J. 415(2): p. 297-307 [6] Oh SM. et al. (2010) Oncogene 29(7): p. 1017-30
Resumo:
PURPOSE To determine the effect of the use of iodinated contrast agents on the formation of DNA double-strand breaks during chest computed tomography (CT). MATERIALS AND METHODS This study was approved by the institutional review board, and written informed consent was obtained from all patients. This single-center study was performed at a university hospital. A total of 179 patients underwent contrast material-enhanced CT, and 66 patients underwent unenhanced CT. Blood samples were taken from these patients prior to and immediately after CT. In these blood samples, the average number of phosphorylated histone H2AX (γH2AX) foci per lymphocyte was determined with fluorescence microscopy. Significant differences between the number of foci that developed in both the presence and the absence of the contrast agent were tested by using an independent sample t test. RESULTS γH2AX foci levels were increased in both groups after CT. Patients who underwent contrast-enhanced CT had an increased amount of DNA radiation damage (mean increase ± standard error of the mean, 0.056 foci per cell ± 0.009). This increase was 107% ± 19 higher than that in patients who underwent unenhanced CT (mean increase, 0.027 foci per cell ± 0.014). CONCLUSION The application of iodinated contrast agents during diagnostic x-ray procedures, such as chest CT, leads to a clear increase in the level of radiation-induced DNA damage as assessed with γH2AX foci formation.
Resumo:
Sensitive assays utilizing a cell-free and an intracellular system were employed to study the molecular bases of the DNA-damaging reactions of neocarzinostatin (NCS). In the cell-free DNA system, super-helical form I DNA from the bacteriophage PM2 was used as the substrate. The three forms of DNA present after treatment with NCS were separated by agarose gel electrophoresis. When NCS-damaged DNA was assayed under neutral conditions, there was a progressive decrease in the amount of surviving form I DNA and a corresponding increase in form II (nicked, relaxed circular) DNA, but very little increase in form III (linear duplex) DNA. This indicates that NCS introduces primarily single-strand breaks. However later studies showed that there were some site-specific double-strand breaks mediated by NCS on PM2 DNA. Seven such specific sites were mapped on the PM2 genome. When the damage was assayed under nondenaturing alkaline conditions or with the apurinic/apyrimidinic endonuclease IV, there was a slightly greater decrease in the amount of surviving form I DNA compared with neutral conditions indicating the presence of some alkali-labile sites.^ NCS-mediated DNA damage and repair were examined with cultured Chinese hamster ovary (CHO) cells using either alkaline elution for analysis of single-strand breaks or neutral elution for analysis of double-strand breaks. Most of the strand breaks introduced by NCS were capable of being rejoined. However, there was a small amount of residual DNA damage remaining unrejoined at 24-hr after removal of the drug. The amount of residual DNA damage was higher in a CHO mutant cell line (EM9) having a higher sensitivity to killing by NCS than its parental strain (AA8). Other lesions, DNA-protein complexes and alkali-labile sites, were detected after NCS treatment but they constituted only a small fraction of the DNA damage.^ Based on the above information, it can be postulated that NCS introduces some very lethal DNA damage. It is likely that the lethal lesions are a subset of the total DNA lesions representing the residual DNA damage. This DNA damage may be composed of site-specific, unrejoinable double-strand breaks and are thus the primary lesion leading to NCS-mediated lethality.^
Resumo:
Pem, a member of the PEPP homeobox family, is expressed in somatic cells in male and female reproductive tissues. In the adult murine testis, Pem is specifically expressed in Sertoli cells, where it is restricted to stages IV–VIII of the seminiferous epithelial cycle. To identify Pem's function in Sertoli cells, transgenic mice were generated that express Pem in Sertoli cells during all stages of the seminiferous epithelial cycle. This resulted in an increase in double-strand DNA breaks in preleptotene spermatocytes and single-strand DNA breaks in elongating spermatids. My results suggest that Pem regulates Sertoli-cell genes that encode secreted or cell-surface proteins that serve to control premeiotic DNA replication, DNA repair, and/or chromatin remodeling in the adjacent germ cells. Three additional transgenic mouse containing varying lengths of the Pem male-specific promoter (Pp) were generated to identify the sequences responsible for regulating Pem expression in the testis and epididymis. My analysis suggests that there are at least two regulatory regions in the Pem Pp. In the testis, region II directs androgen-dependent expression specifically in Sertoli cells whereas region I fine-tunes stage-specific expression by acting as a negative regulator. In the epididymis, region II confers androgen-dependent, developmentally-regulated expression in the caput whereas region I prevents inappropriate expression in the corpus. I also report the identification and characterization of two human PEPP family members related to Pem that I have named hPEPP1 and hPEPP2. The hPEPP1 and hPEPP2 homeodomains are more closely related to PEPP subfamily homeodomains than to any other homeodomain subfamily. Both genes are localized to the specific region of the human X chromosome that shares synteny with the region on the murine X chromosome containing three PEPP homeobox genes, Pem, Psx-1, and Psx-2. hPEPP1 and hPEPP2 mRNA expression is restricted to the testis but is aberrantly expressed in tumor cells of different origins, analogous to the expression pattern of Pem but not of Psx-1 or Psx-2. Unlike all known PEPP members, neither hPEPP1 nor hPEPP2 are expressed in placenta, which suggests that the regulation of the PEPP family has undergone significant alteration since the split between hominids and rodents. ^
Resumo:
The molecular mechanisms responsible for the expansion and deletion of trinucleotide repeat sequences (TRS) are the focus of our studies. Several hereditary neurological diseases including Huntington's disease, myotonic dystrophy, and fragile X syndrome are associated with the instability of TRS. Using the well defined and controllable model system of Escherichia coli, the influences of three types of DNA incisions on genetic instability of CTG•CAG repeats were studied: DNA double-strand breaks (DSB), single-strand nicks, and single-strand gaps. The DNA incisions were generated in pUC19 derivatives by in vitro cleavage with restriction endonucleases. The cleaved DNA was then transformed into E. coli parental and mutant strains. Double-strand breaks induced deletions throughout the TRS region in an orientation dependent manner relative to the origin of replication. The extent of instability was enhanced by the repeat length and sequence (CTG•CAG vs. CGG•CCG). Mutations in recA and recBC increased deletions, mutations in recF stabilized the TRS, whereas mutations in ruvA had no effect. DSB were repaired by intramolecular recombination, versus an intermolecular gene conversion or crossover mechanism. 30 nt gaps formed a distinct 30 nt deletion product, whereas single strand nicks and gaps of 15 nts did not induce expansions or deletions. Formation of this deletion product required the CTG•CAG repeats to be present in the single-stranded region and was stimulated by E. coli DNA ligase, but was not dependent upon the RecFOR pathway. Models are presented to explain the DSB induced instabilities and formation of the 30 nucleotide deletion product. In addition to the in vitro creation of DSBs, several attempts to generate this incision in vivo with the use of EcoR I restriction modification systems were conducted. ^
The mechanism of action of a novel benzo[c]phenanthridine alkaloid, NK314 and the cellular responses
Resumo:
NK314 is a novel synthetic benzo[c]phenanthridine alkaloid that is currently in clinical trials as an antitumor compound, based on impressive activities in preclinical models. However, its mechanism of action is unknown. The present investigations were directed at determining the mechanism of action of this agent and cellular responses to NK314. My studies demonstrated that NK314 intercalated into DNA, trapped topoisomerase IIα in its cleavage complex intermediate, and inhibited the ability of topoisomerase IIα to relax super-coiled DNA. CEM/VM1 cells, which are resistant to etoposide due to mutations in topoisomerase IIα, were cross-resistant to NK314. However, CEM/C2 cells, which are resistant to camptothecin due to mutations in topoisomerase I, retained sensitivity. This indicates topoisomerase IIα is the target of NK314 in the cells. NK314 caused phosphorylation of the histone variant, H2AX, which is considered a marker of DNA double-strand breaks. DNA double-strand breaks were also evidenced by pulsed-field gel electrophoresis and visualized as chromosomal aberrations after cells were treated with NK314 and arrested in mitosis. Cell cycle checkpoints are activated following DNA damage. NK314 induced significant G2 cell cycle arrest in several cell lines, independent of p53 status, suggesting the existence of a common mechanism of checkpoint activation. The Chk1-Cdc25C-Cdk1 G2 checkpoint pathway was activated in response to NK314, which can be abrogated by the Chk1 inhibitor UCN-01. Cell cycle checkpoint activation may be a defensive mechanism that provides time for DNA repair. DNA double-strand breaks are repaired either through ATM-mediated homologous recombination or DNA-PK-mediated non-homologous end-joining repair pathways. Clonogenic assays demonstrated a significant decrease of colony formation in both ATM deficient and DNA-PK deficient cells compared to ATM repleted and DNA-PK wild type cells respectively, indicating that both ATM and DNA-PK play important roles in the survival of the cells in response to NK314. The DNA-PK specific inhibitor NU7441 also significantly sensitized cells to NK314. In conclusion, the major mechanism of NK314 is to intercalate into DNA, trap and inhibit topoisomerase IIα, an action that leads to the generation of double-strand DNA breaks, which activate ATM and DNA-PK mediated DNA repair pathways and Chk1 mediated G2 checkpoint pathway. ^
Resumo:
The E2F1 transcription factor is a well-known regulator of cell proliferation and apoptosis, but its role in the DNA damage response is less clear. It has been shown that E2F1 becomes stabilized in response to DNA double strand breaks (DSBs) and accumulates at sites of DSBs. This process requires ATM kinase and serine 31 phosphorylation, which provides a binding site for TopBp1. However, the role of E2F1 at sites of DNA damage is not clear. We expanded the study of E2F1's role in the DNA damage response by exploring its functions in ultraviolet (UV) induced DNA damage, and identified that E2F1 promotes DNA repair and cell survival. To further investigate the mechanisms underlying our findings, we examined the possibility for direct involvement of E2F1 in DNA repair. We found that E2F1 localizes to sites of UV irradiation-induced DNA damage dependent on the ATR kinase and serine 31 of E2F1. E2F1 also associates with the GCN5 histone acetyltransferase in response to UV irradiation and recruits GCN5 to sites of DNA damage. This correlates with an increase in histone H3 lysine 9 (H3K9) acetylation and chromatin relaxation. In the absence of E2F1 or GCN5, nucleotide excision repair (NER) proteins do not efficiently localize to sites of UV damage and DNA repair is impaired. E2F1 mutants unable to bind DNA or activate transcription retain the ability to stimulate NER. These findings demonstrate a non-transcriptional role for E2F1 in DNA repair involving GCN5-mediated H3K9 acetylation and increased accessibility to the NER machinery. ^
Resumo:
The inability to maintain genomic stability and control proliferation are hallmarks of many cancers, which become exacerbated in the presence of unrepaired DNA damage. Such genotoxic stresses trigger the p53 tumor suppressor network to activate transient cell cycle arrest allowing for DNA repair; if the damage is excessive or irreparable, apoptosis or cellular senescence is triggered. One of the major DNA repair pathway that mends DNA double strand breaks is non-homologous end joining (NHEJ). Abrogating the NHEJ pathway leads to an accumulation of DNA damage in the lymphoid system that triggers p53-mediated apoptosis; complete deletion of p53 in this system leads to aggressive lymphomagenesis. Therefore, to study the effect of p53-dependent cell cycle arrest, we utilized a hypomorphic, separation-of-function mutant, p53p/p, which completely abrogates apoptosis yet retains partial cell cycle arrest ability. We crossed DNA ligase IV deficiency, a downstream ligase crucial in mending breaks during NHEJ, into the p53p/p background (Lig4-/-p53p/p). The accumulation of DNA damage activated the p53/p21 axis to trigger cellular senescence in developing lymphoid cells, which absolutely suppressed tumorigenesis. Interestingly, these mice progressively succumb to severe diabetes. Mechanistic analysis revealed that spontaneous DNA damage accumulated in the pancreatic b-cells, a unique subset of endocrine cells solely responsible for insulin production to regulate glucose homeostasis. The genesis of adult b-cells predominantly occurs through self-replication, therefore modulating cellular proliferation is an essential component for renewal. The progressive accumulation of DNA damage, caused by Lig4-/-, activated p53/p21-dependent cellular senescence in mutant pancreatic b-cells that lead to islet involution. Insulin levels subsequently decreased, deregulating glucose homeostasis driving overt diabetes. Our Lig4-/-p53p/p model aptly depicts the dichotomous role of cellular senescence—in the lymphoid system prevents tumorigenesis yet in the endocrine system leads to the decrease of insulin-producing cells causing diabetes. To further delineate the function of NHEJ in pancreatic b-cells, we analyzed mice deficient in another component of the NHEJ pathway, Ku70. Although most notable for its role in DNA damage recognition and repair within the NHEJ pathway, Ku70 has NHEJ-independent functions in telomere maintenance, apoptosis, and transcriptional regulation/repression. To our surprise, Ku70-/-p53p/p mutant mice displayed a stark increase in b-cell proliferation, resulting in islet expansion, heightened insulin levels and hypoglycemia. Augmented b-cell proliferation was accompanied with the stabilization of the canonical Wnt pathway, responsible for this phenotype. Interestingly, the progressive onset of cellular senescence prevented islet tumorigenesis. This study highlights Ku70 as an important modulator in not only maintaining genomic stability through NHEJ-dependent functions, but also reveals a novel NHEJ-independent function through regulation of pancreatic b-cell proliferation. Taken in aggregate, these studies underscore the importance for NHEJ to maintain genomic stability in b-cells as well as introduces a novel regulator for pancreatic b-cell proliferation.
Resumo:
We designed and synthesized a novel daunorubicin (DNR) analogue that effectively circumvents P-glycoprotein (P-gp)-mediated drug resistance. The fully protected carbohydrate intermediate 1,2-dibromoacosamine was prepared from acosamine and effectively coupled to daunomycinone in high yield. Deprotection under alkaline conditions yielded 2$\sp\prime$-bromo-4$\sp\prime$-epidaunorubicin (WP401). The in vitro cytotoxicity and cellular and molecular pharmacology of WP401 were compared with those of DNR in a panel of wild-type cell lines (KB-3-1, P388S, and HL60S) and their multidrug-resistant (MDR) counterparts (KB-V1, P388/DOX, and HL60/DOX). Fluorescent spectrophotometry, flow cytometry, and confocal laser scanning microscopy were used to measure intracellular accumulation, retention, and subcellular distribution of these agents. All MDR cell lines exhibited reduced DNR uptake that was restored, upon incubation with either verapamil (VER) or cyclosporin A (CSA), to the level found in sensitive cell lines. In contrast, the uptake of WP401 was essentially the same in the absence or presence of VER or CSA in all tested cell lines. The in vitro cytotoxicity of WP401 was similar to that of DNR in the sensitive cell lines but significantly higher in resistant cell lines (resistance index (RI) of 2-6 for WP401 vs 75-85 for DNR). To ascertain whether drug-mediated cytotoxicity and retention were accompanied by DNA strand breaks, DNA single- and double-strand breaks were assessed by alkaline elution. High levels of such breaks were obtained using 0.1-2 $\mu$g/mL of WP401 in both sensitive and resistant cells. In contrast, DNR caused strand breaks only in sensitive cells and not much in resistant cells. We also compared drug-induced DNA fragmentation similar to that induced by DNR. However, in P-gp-positive cells, WP401 induced 2- to 5-fold more DNA fragmentation than DNR. This increased DNA strand breakage by WP401 was correlated with its increased uptake and cytotoxicity in these cell lines. Overall these results indicate that WP401 is more cytotoxic than DNR in MDR cells and that this phenomenon might be related to the reduced basicity of the amino group and increased lipophilicity of WP401. ^
Resumo:
Telomeres are specialized DNA/protein complexes that comprise the ends of eukaryotic chromosomes. The highly expressed Ku heterodimer, composed of 70 and 80 Kd subunits (Ku70 and Ku80), is the high-affinity DNA binding component of the DNA-dependent protein kinase. Ku is critical for nonhomologous DNA double-stranded break repair and site-specific recombination of V(D)J gene segments. Ku also plays an important role in telomere maintenance in yeast. Herein, we report, using an in vivo crosslinking method, that human and hamster telomeric DNAs specifically coimmunoprecipitate with human Ku80 after crosslinking. Localization of Ku to the telomere does not depend on the DNA-dependent protein kinase catalytic component. These findings suggest a direct link between Ku and the telomere in mammalian cells.
Resumo:
Bacteriophage λ encodes a number of genes involved in the recombinational repair of DNA double-strand breaks. The product of one of these genes, rap, has been purified. Truncated Rap proteins that copurify with the full-length form are derived, at least in part, from a ρ-dependent transcription terminator located within its coding sequence. Full-length and certain truncated Rap polypeptides bind preferentially to branched DNA substrates, including synthetic Holliday junctions and D-loops. In the presence of manganese ions, Rap acts as an endonuclease that cleaves at the branch point of Holliday and D-loop substrates. It shows no obvious sequence preference or symmetry of cleavage on a Holliday junction. The biochemical analysis of Rap gives an insight into how recombinants could be generated by the nicking of a D-loop without the formation of a classical Holliday junction.
Resumo:
Clustered DNA damages—two or more closely spaced damages (strand breaks, abasic sites, or oxidized bases) on opposing strands—are suspects as critical lesions producing lethal and mutagenic effects of ionizing radiation. However, as a result of the lack of methods for measuring damage clusters induced by ionizing radiation in genomic DNA, neither the frequencies of their production by physiological doses of radiation, nor their repairability, nor their biological effects are known. On the basis of methods that we developed for quantitating damages in large DNAs, we have devised and validated a way of measuring ionizing radiation-induced clustered lesions in genomic DNA, including DNA from human cells. DNA is treated with an endonuclease that induces a single-strand cleavage at an oxidized base or abasic site. If there are two closely spaced damages on opposing strands, such cleavage will reduce the size of the DNA on a nondenaturing gel. We show that ionizing radiation does induce clustered DNA damages containing abasic sites, oxidized purines, or oxidized pyrimidines. Further, the frequency of each of these cluster classes is comparable to that of frank double-strand breaks; among all complex damages induced by ionizing radiation, double-strand breaks are only about 20%, with other clustered damage constituting some 80%. We also show that even low doses (0.1–1 Gy) of high linear energy transfer ionizing radiation induce clustered damages in human cells.