982 resultados para Dort Motor Car Company
Resumo:
Human factors such as distraction, fatigue, alcohol and drug use are generally ignored in car-following (CF) models. Such ignorance overestimates driver capability and leads to most CF models’ inability in realistically explaining human driving behaviors. This paper proposes a novel car-following modeling framework by introducing the difficulty of driving task measured as the dynamic interaction between driving task demand and driver capability. Task difficulty is formulated based on the famous Task Capability Interface (TCI) model, which explains the motivations behind driver’s decision making. The proposed method is applied to enhance two popular CF models: Gipps’ model and IDM, and named as TDGipps and TDIDM respectively. The behavioral soundness of TDGipps and TDIDM are discussed and their stabilities are analyzed. Moreover, the enhanced models are calibrated with the vehicle trajectory data, and validated to explain both regular and human factor influenced CF behavior (which is distraction caused by hand-held mobile phone conversation in this paper). Both the models show better performance than their predecessors, especially in presence of human factors.
Resumo:
Drivers behave in different ways, and these different behaviors are a cause of traffic disturbances. A key objective for simulation tools is to correctly reproduce this variability, in particular for car-following models. From data collection to the sampling of realistic behaviors, a chain of key issues must be addressed. This paper discusses data filtering, robustness of calibration, correlation between parameters, and sampling techniques of acceleration-time continuous car-following models. The robustness of calibration is systematically investigated with an objective function that allows confidence regions around the minimum to be obtained. Then, the correlation between sets of calibrated parameters and the validity of the joint distributions sampling techniques are discussed. This paper confirms the need for adapted calibration and sampling techniques to obtain realistic sets of car-following parameters, which can be used later for simulation purposes.
Resumo:
A global framework for linear stability analyses of traffic models, based on the dispersion relation root locus method, is presented and is applied taking the example of a broad class of car-following (CF) models. This approach is able to analyse all aspects of the dynamics: long waves and short wave behaviours, phase velocities and stability features. The methodology is applied to investigate the potential benefits of connected vehicles, i.e. V2V communication enabling a vehicle to send and receive information to and from surrounding vehicles. We choose to focus on the design of the coefficients of cooperation which weights the information from downstream vehicles. The coefficients tuning is performed and different ways of implementing an efficient cooperative strategy are discussed. Hence, this paper brings design methods in order to obtain robust stability of traffic models, with application on cooperative CF models
Resumo:
Stability analyses have been widely used to better understand the mechanism of traffic jam formation. In this paper, we consider the impact of cooperative systems (a.k.a. connected vehicles) on traffic dynamics and, more precisely, on flow stability. Cooperative systems are emerging technologies enabling communication between vehicles and/or with the infrastructure. In a distributed communication framework, equipped vehicles are able to send and receive information to/from other equipped vehicles. Here, the effects of cooperative traffic are modeled through a general bilateral multianticipative car-following law that improves cooperative drivers' perception of their surrounding traffic conditions within a given communication range. Linear stability analyses are performed for a broad class of car-following models. They point out different stability conditions in both multianticipative and nonmultianticipative situations. To better understand what happens in unstable conditions, information on the shock wave structure is studied in the weakly nonlinear regime by the mean of the reductive perturbation method. The shock wave equation is obtained for generic car-following models by deriving the Korteweg de Vries equations. We then derive traffic-state-dependent conditions for the sign of the solitary wave (soliton) amplitude. This analytical result is verified through simulations. Simulation results confirm the validity of the speed estimate. The variation of the soliton amplitude as a function of the communication range is provided. The performed linear and weakly nonlinear analyses help justify the potential benefits of vehicle-integrated communication systems and provide new insights supporting the future implementation of cooperative systems.
Resumo:
Crashes at any particular transport network location consist of a chain of events arising from a multitude of potential causes and/or contributing factors whose nature is likely to reflect geometric characteristics of the road, spatial effects of the surrounding environment, and human behavioural factors. It is postulated that these potential contributing factors do not arise from the same underlying risk process, and thus should be explicitly modelled and understood. The state of the practice in road safety network management applies a safety performance function that represents a single risk process to explain crash variability across network sites. This study aims to elucidate the importance of differentiating among various underlying risk processes contributing to the observed crash count at any particular network location. To demonstrate the principle of this theoretical and corresponding methodological approach, the study explores engineering (e.g. segment length, speed limit) and unobserved spatial factors (e.g. climatic factors, presence of schools) as two explicit sources of crash contributing factors. A Bayesian Latent Class (BLC) analysis is used to explore these two sources and to incorporate prior information about their contribution to crash occurrence. The methodology is applied to the state controlled roads in Queensland, Australia and the results are compared with the traditional Negative Binomial (NB) model. A comparison of goodness of fit measures indicates that the model with a double risk process outperforms the single risk process NB model, and thus indicating the need for further research to capture all the three crash generation processes into the SPFs.
Resumo:
Driver distraction through mobile phone use in the car is a growing road safety concern. This paper presents findings of a survey (N = 528), which seeks to better understand the predictors of mobile phone use while driving in young (18-25) adult drivers. The survey investigated factors and motivations such as young adults' boredom proneness and their social connectedness, as well as their general mobile phone use and phone use in the car. We found, e.g., that boredom proneness plays a larger role (compared to social connectedness) in determining how much a young male uses their phone in the car (compared to young females). Despite the study’s limitations, this initial understanding allows us to better design and develop innovative HCI interventions that prevent young adults, particularly males, from phone use while driving in a way that appeals to their needs.
Resumo:
Objective To examine the association between glaucoma and motor vehicle collision (MVC) involvement among older drivers, including the role of visual field impairment that may underlie any association found. Design A retrospective population-based study Participants A sample of 2,000 licensed drivers aged 70 years and older who reside in north central Alabama. Methods At-fault MVC involvement for five years prior to enrollment was obtained from state records. Three aspects of visual function were measured: habitual binocular distance visual acuity, binocular contrast sensitivity and the binocular driving visual field constructed from combining the monocular visual fields of each eye. Poisson regression was used to calculate crude and adjusted rate ratios (RR) and 95% confidence intervals (CI). Main Outcomes Measures At-fault MVC involvement for five years prior to enrollment. Results Drivers with glaucoma (n = 206) had a 1.65 (95% confidence interval [CI] 1.20-2.28, p = 0.002) times higher MVC rate compared to those without glaucoma after adjusting for age, gender and mental status. Among those with glaucoma, drivers with severe visual field loss had higher MVC rates (RR = 2.11, 95% CI 1.09-4.09, p = 0.027), whereas no significant association was found among those with impaired visual acuity and contrast sensitivity. When the visual field was sub-divided into six regions (upper, lower, left, and right visual fields; horizontal and vertical meridians), we found that impairment in the left, upper or lower visual field was associated with higher MVC rates, and an impaired left visual field showed the highest RR (RR = 3.16, p = 0.001) compared to other regions. However, no significant association was found in deficits in the right side or along the horizontal or vertical meridian. Conclusions A population-based study suggests that older drivers with glaucoma are more likely to have a history of at-fault MVC involvement than those without glaucoma. Impairment in the driving visual field in drivers with glaucoma appears to have an independent association with at-fault MVC involvement, whereas visual acuity and contrast sensitivity impairments do not.
Resumo:
Current source inverter (CSI) is an attractive solution in high-power drives. The conventional gate turn-off thyristor (GTO) based CSI-fed induction motor drives suffer from drawbacks such as low-frequency torque pulsation, harmonic heating, and unstable operation at low-speed ranges. These drawbacks can be overcome by connecting a current-controlled voltage source inverter (VSI) across the motor terminal replacing the bulky ac capacitors. The VSI provides the harmonic currents, which results in sinusoidal motor voltage and current even with the CSI switching at fundamental frequency. This paper proposes a CSI-fed induction motor drive scheme where GTOs are replaced by thyristors in the CSI without any external circuit to assist the turning off of the thyristors. Here, the current-controlled VSI, connected in shunt, is designed to supply the volt ampere reactive requirement of the induction motor, and the CSI is made to operate in leading power factor mode such that the thyristors in the CSI are autosequentially turned off. The resulting drive will be able to feed medium-voltage, high-power induction motors directly. A sensorless vector-controlled CSI drive based on the proposed configuration is developed. The experimental results from a 5 hp prototype are presented. Experimental results show that the proposed drive has stable operation throughout the operating range of speeds.
Resumo:
This paper develops a seven-level inverter structure for open-end winding induction motor drives. The inverter supply is realized by cascading four two-level and two three-level neutral-point-clamped inverters. The inverter control is designed in such a way that the common-mode voltage (CMV) is eliminated. DC-link capacitor voltage balancing is also achieved by using only the switching-state redundancies. The proposed power circuit structure is modular and therefore suitable for fault-tolerant applications. By appropriately isolating some of the inverters, the drive can be operated during fault conditions in a five-level or a three-level inverter mode, with preserved CMV elimination and DC-link capacitor voltage balancing, within a reduced modulation range.
Resumo:
This paper describes a method of adjusting the stator power factor angle for the control of an induction motor fed from a current source inverter (CSI) based on the concept of space vectors (or park vectors). It is shown that under steady state, if the torque angle is kept constant over the entire operating range, it has the advantage of keeping the slip frequency constant. This can be utilized to dispose of the speed feedback and simplify the control scheme for the drive, such that the stator voltage integral zero crossings alone can be used as a feedback for deciding the triggering instants of the CSI thyristors under stable operation of the system. A closed-loop control strategy is developed for the drive based on this principle, using a microprocessor-based control system and is implemented on a laboratory prototype CSI fed induction motor drive.
Resumo:
This paper proposes a multilevel inverter which produces hexagonal voltage space vector structure in lower modulation region and a 12-sided polygonal space vector structure in the over-modulation region. Normal conventional multilevel inverter produces 6n +/- 1 (n=odd) harmonics in the phase voltage during over-modulation and in the extreme square wave mode operation. However, this inverter produces a 12-sided polygonal space vector location leading to the elimination of 6n 1 (n=odd) harmonics in over-modulation region extending to a final 12-step mode operation. The inverter consists of three conventional cascaded two level inverters with asymmetric dc bus voltages. The switching frequency of individual inverters is kept low throughout the modulation index. In the low speed region, hexagonal space phasor based PWM scheme and in the higher modulation region, 12-sided polygonal voltage space vector structure is used. Experimental results presented in this paper shows that the proposed converter is suitable for high power applications because of low harmonic distortion and low switching losses.
Resumo:
Aggressive driving has been shown to be related to increased crash risk for car driving. However, less is known about aggressive behaviour and motorcycle riding and whether there are differences in on-road aggression as a function of vehicle type. If such differences exist, these could relate to differences in perceptions of relative vulnerability associated with characteristics of the type of vehicle such as level of protection and performance. Specifically, the relative lack of protection offered by motorcycles may cause riders to feel more vulnerable and therefore to be less aggressive when they are riding compared to when they are driving. This study examined differences in self-reported aggression as a function of two vehicle types: passenger cars and motorcycles. Respondents (n = 247) were all motorcyclists who also drove a car. Results were that scores for the composite driving aggression scale were significantly higher than on the composite riding aggression scale. Regression analyses identified different patterns of predictors for driving aggression from those for riding aggression. Safety attitudes followed by thrill seeking tendencies were the strongest predictors for driving aggression, with more positive safety attitudes being protective while greater thrill seeking was associated with greater self-reported aggressive driving behaviour. For riding aggression, thrill seeking was the strongest predictor (positive relationship), followed by self-rated skill, such that higher self rated skill was protective against riding aggression. Participants who scored at the 85th percentile or above for the aggressive driving and aggressive riding indices had significantly higher scores on thrill seeking, greater intentions to engage in future risk taking, and lower safety attitude scores than other participants. In addition participants with the highest aggressive driving scores also had higher levels of self-reported past traffic offences than other participants. Collectively, these findings suggest that people are less likely to act aggressively when riding a motorcycle than when driving a car, and that those who are the most aggressive drivers are different from those who are the most aggressive riders. However, aggressive riders and drivers appear to present a risk to themselves and others on road. Importantly, the underlying influences for aggressive riding or driving that were identified in this study may be amenable to education and training interventions.
Resumo:
The decision in McDermott v Robinson Helicopter Company (No 2) [2014] QSC 213 involves an extensive examination of authorities on the general principle relating to the awarding of costs to a successful party. The court concluded that there was a predilection in favour of distributing costs according to the outcome or 'event' of particular issues in the action.