977 resultados para Document classification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a new feature-based approach for mosaicing of camera-captured document images. A novel block-based scheme is employed to ensure that corners can be reliably detected over a wide range of images. 2-D discrete cosine transform is computed for image blocks defined around each of the detected corners and a small subset of the coefficients is used as a feature vector A 2-pass feature matching is performed to establish point correspondences from which the homography relating the input images could be computed. The algorithm is tested on a number of complex document images casually taken from a hand-held camera yielding convincing results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study deals with the application of cluster analysis, Fuzzy Cluster Analysis (FCA) and Kohonen Artificial Neural Networks (KANN) methods for classification of 159 meteorological stations in India into meteorologically homogeneous groups. Eight parameters, namely latitude, longitude, elevation, average temperature, humidity, wind speed, sunshine hours and solar radiation, are considered as the classification criteria for grouping. The optimal number of groups is determined as 14 based on the Davies-Bouldin index approach. It is observed that the FCA approach performed better than the other two methodologies for the present study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skew correction of complex document images is a difficult task. We propose an edge-based connected component approach for robust skew correction of documents with complex layout and content. The algorithm essentially consists of two steps - an 'initialization' step to determine the image orientation from the centroids of the connected components and a 'search' step to find the actual skew of the image. During initialization, we choose two different sets of points regularly spaced across the the image, one from the left to right and the other from top to bottom. The image orientation is determined from the slope between the two succesive nearest neighbors of each of the points in the chosen set. The search step finds succesive nearest neighbors that satisfy the parameters obtained in the initialization step. The final skew is determined from the slopes obtained in the 'search' step. Unlike other connected component based methods, the proposed method does not require any binarization step that generally precedes connected component analysis. The method works well for scanned documents with complex layout of any skew with a precision of 0.5 degrees.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a novel family of kernels for multivariate time-series classification problems. Each time-series is approximated by a linear combination of piecewise polynomial functions in a Reproducing Kernel Hilbert Space by a novel kernel interpolation technique. Using the associated kernel function a large margin classification formulation is proposed which can discriminate between two classes. The formulation leads to kernels, between two multivariate time-series, which can be efficiently computed. The kernels have been successfully applied to writer independent handwritten character recognition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The document images that are fed into an Optical Character Recognition system, might be skewed. This could be due to improper feeding of the document into the scanner or may be due to a faulty scanner. In this paper, we propose a skew detection and correction method for document images. We make use of the inherent randomness in the Horizontal Projection profiles of a text block image, as the skew of the image varies. The proposed algorithm has proved to be very robust and time efficient. The entire process takes less than a second on a 2.4 GHz Pentium IV PC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper focuses on optimisation algorithms inspired by swarm intelligence for satellite image classification from high resolution satellite multi- spectral images. Amongst the multiple benefits and uses of remote sensing, one of the most important has been its use in solving the problem of land cover mapping. As the frontiers of space technology advance, the knowledge derived from the satellite data has also grown in sophistication. Image classification forms the core of the solution to the land cover mapping problem. No single classifier can prove to satisfactorily classify all the basic land cover classes of an urban region. In both supervised and unsupervised classification methods, the evolutionary algorithms are not exploited to their full potential. This work tackles the land map covering by Ant Colony Optimisation (ACO) and Particle Swarm Optimisation (PSO) which are arguably the most popular algorithms in this category. We present the results of classification techniques using swarm intelligence for the problem of land cover mapping for an urban region. The high resolution Quick-bird data has been used for the experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The introduction of casemix funding for Australian acute health care services has challenged Social Work to demonstrate clear reporting mechanisms, demonstrate effective practice and to justify interventions provided. The term 'casemix' is used to describe the mix and type of patients treated by a hospital or other health care services. There is wide acknowledgement that the procedure-based system of Diagnosis Related Groupings (DRGs) is grounded in a medical/illness perspective and is unsatisfactory in describing and predicting the activity of Social Work and other allied health professions in health care service delivery. The National Allied Health Casemix Committee was established in 1991 as the peak body to represent allied health professions in matters related to casemix classification. This Committee has pioneered a nationally consistent, patient-centred information system for allied health. This paper describes the classification systems and codes developed for Social Work, which includes a minimum data set, a classification hierarchy, the set of activity (input) codes and 'indicator for intervention' codes. The advantages and limitations of the system are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evaluation of intermolecular interactions in terms of both experimental and theoretical charge density analyses has produced a unified picture with which to classify strong and weak hydrogen bonds, along with van der Waals interactions, into three regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background:Overwhelming majority of the Serine/Threonine protein kinases identified by gleaning archaeal and eubacterial genomes could not be classified into any of the well known Hanks and Hunter subfamilies of protein kinases. This is owing to the development of Hanks and Hunter classification scheme based on eukaryotic protein kinases which are highly divergent from their prokaryotic homologues. A large dataset of prokaryotic Serine/Threonine protein kinases recognized from genomes of prokaryotes have been used to develop a classification framework for prokaryotic Ser/Thr protein kinases. Methodology/Principal Findings: We have used traditional sequence alignment and phylogenetic approaches and clustered the prokaryotic kinases which represent 72 subfamilies with at least 4 members in each. Such a clustering enables classification of prokaryotic Ser/Thr kinases and it can be used as a framework to classify newly identified prokaryotic Ser/Thr kinases. After series of searches in a comprehensive sequence database we recognized that 38 subfamilies of prokaryotic protein kinases are associated to a specific taxonomic level. For example 4, 6 and 3 subfamilies have been identified that are currently specific to phylum proteobacteria, cyanobacteria and actinobacteria respectively. Similarly subfamilies which are specific to an order, sub-order, class, family and genus have also been identified. In addition to these, we also identify organism-diverse subfamilies. Members of these clusters are from organisms of different taxonomic levels, such as archaea, bacteria, eukaryotes and viruses.Conclusion/Significance: Interestingly, occurrence of several taxonomic level specific subfamilies of prokaryotic kinases contrasts with classification of eukaryotic protein kinases in which most of the popular subfamilies of eukaryotic protein kinases occur diversely in several eukaryotes. Many prokaryotic Ser/Thr kinases exhibit a wide variety of modular organization which indicates a degree of complexity and protein-protein interactions in the signaling pathways in these microbes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electronic document management (EDM) technology has the potential to enhance the information management in construction projects considerably, without radical changes to current practice. Over the past fifteen years this topic has been overshadowed by building product modelling in the construction IT research world, but at present EDM is quickly being introduced in practice, in particular in bigger projects. Often this is done in the form of third party services available over the World Wide Web. In the paper, a typology of research questions and methods is presented, which can be used to position the individual research efforts which are surveyed in the paper. Questions dealt with include: What features should EMD systems have? How much are they used? Are there benefits from use and how should these be measured? What are the barriers to wide-spread adoption? Which technical questions need to be solved? Is there scope for standardisation? How will the market for such systems evolve?

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Layering is a widely used method for structuring data in CAD-models. During the last few years national standardisation organisations, professional associations, user groups for particular CAD-systems, individual companies etc. have issued numerous standards and guidelines for the naming and structuring of layers in building design. In order to increase the integration of CAD data in the industry as a whole ISO recently decided to define an international standard for layer usage. The resulting standard proposal, ISO 13567, is a rather complex framework standard which strives to be more of a union than the least common denominator of the capabilities of existing guidelines. A number of principles have been followed in the design of the proposal. The first one is the separation of the conceptual organisation of information (semantics) from the way this information is coded (syntax). The second one is orthogonality - the fact that many ways of classifying information are independent of each other and can be applied in combinations. The third overriding principle is the reuse of existing national or international standards whenever appropriate. The fourth principle allows users to apply well-defined subsets of the overall superset of possible layernames. This article describes the semantic organisation of the standard proposal as well as its default syntax. Important information categories deal with the party responsible for the information, the type of building element shown, whether a layer contains the direct graphical description of a building part or additional information needed in an output drawing etc. Non-mandatory information categories facilitate the structuring of information in rebuilding projects, use of layers for spatial grouping in large multi-storey projects, and storing multiple representations intended for different drawing scales in the same model. Pilot testing of ISO 13567 is currently being carried out in a number of countries which have been involved in the definition of the standard. In the article two implementations, which have been carried out independently in Sweden and Finland, are described. The article concludes with a discussion of the benefits and possible drawbacks of the standard. Incremental development within the industry, (where ”best practice” can become ”common practice” via a standard such as ISO 13567), is contrasted with the more idealistic scenario of building product models. The relationship between CAD-layering, document management product modelling and building element classification is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Triggered by the very quick proliferation of Internet connectivity, electronic document management (EDM) systems are now rapidly being adopted for managing the documentation that is produced and exchanged in construction projects. Nevertheless there are still substantial barriers to the efficient use of such systems, mainly of a psychological nature and related to insufficient training. This paper presents the results of empirical studies carried out during 2002 concerning the current usage of EDM systems in the Finnish construction industry. The studies employed three different methods in order to provide a multifaceted view of the problem area, both on the industry and individual project level. In order to provide an accurate measurement of overall usage volume in the industry as a whole telephone interviews with key personnel from 100 randomly chosen construction projects were conducted. The interviews showed that while around 1/3 of big projects already have adopted the use of EDM, very few small projects have adopted this technology. The barriers to introduction were investigated through interviews with representatives for half a dozen of providers of systems and ASP-services. These interviews shed a lot of light on the dynamics of the market for this type of services and illustrated the diversity of business strategies adopted by vendors. In the final study log files from a project which had used an EDM system were analysed in order to determine usage patterns. The results illustrated that use is yet incomplete in coverage and that only a part of the individuals involved in the project used the system efficiently, either as information producers or consumers. The study also provided feedback on the usefulness of the log files.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper aims at evaluating the methods of multiclass support vector machines (SVMs) for effective use in distance relay coordination. Also, it describes a strategy of supportive systems to aid the conventional protection philosophy in combating situations where protection systems have maloperated and/or information is missing and provide selective and secure coordinations. SVMs have considerable potential as zone classifiers of distance relay coordination. This typically requires a multiclass SVM classifier to effectively analyze/build the underlying concept between reach of different zones and the apparent impedance trajectory during fault. Several methods have been proposed for multiclass classification where typically several binary SVM classifiers are combined together. Some authors have extended binary SVM classification to one-step single optimization operation considering all classes at once. In this paper, one-step multiclass classification, one-against-all, and one-against-one multiclass methods are compared for their performance with respect to accuracy, number of iterations, number of support vectors, training, and testing time. The performance analysis of these three methods is presented on three data sets belonging to training and testing patterns of three supportive systems for a region and part of a network, which is an equivalent 526-bus system of the practical Indian Western grid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Separation of printed text blocks from the non-text areas, containing signatures, handwritten text, logos and other such symbols, is a necessary first step for an OCR involving printed text recognition. In the present work, we compare the efficacy of some feature-classifier combinations to carry out this separation task. We have selected length-nomalized horizontal projection profile (HPP) as the starting point of such a separation task. This is with the assumption that the printed text blocks contain lines of text which generate HPP's with some regularity. Such an assumption is demonstrated to be valid. Our features are the HPP and its two transformed versions, namely, eigen and Fisher profiles. Four well known classifiers, namely, Nearest neighbor, Linear discriminant function, SVM's and artificial neural networks have been considered and efficiency of the combination of these classifiers with the above features is compared. A sequential floating feature selection technique has been adopted to enhance the efficiency of this separation task. The results give an average accuracy of about 96.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper. we propose a novel method using wavelets as input to neural network self-organizing maps and support vector machine for classification of magnetic resonance (MR) images of the human brain. The proposed method classifies MR brain images as either normal or abnormal. We have tested the proposed approach using a dataset of 52 MR brain images. Good classification percentage of more than 94% was achieved using the neural network self-organizing maps (SOM) and 98% front support vector machine. We observed that the classification rate is high for a Support vector machine classifier compared to self-organizing map-based approach.