988 resultados para Dna Strand Breaks


Relevância:

80.00% 80.00%

Publicador:

Resumo:

DNA repair is crucial to the survival of all organisms. The bacterial RecA protein is a central component in the SOS response and in recombinational and SOS DNA repairs. The RecX protein has been characterized as a negative modulator of RecA activity in many bacteria. The recA and recX genes of Herbaspirillum seropedicae constitute a single operon, and evidence suggests that RecX participates in SOS repair. In the present study, we show that the H. seropedicae RecX protein (RecX Hs) can interact with the H. seropedicaeRecA protein (RecA Hs) and that RecA Hs possesses ATP binding, ATP hydrolyzing and DNA strand exchange activities. RecX Hs inhibited 90% of the RecA Hs DNA strand exchange activity even when present in a 50-fold lower molar concentration than RecA Hs. RecA Hs ATP binding was not affected by the addition of RecX, but the ATPase activity was reduced. When RecX Hs was present before the formation of RecA filaments (RecA-ssDNA), inhibition of ATPase activity was substantially reduced and excess ssDNA also partially suppressed this inhibition. The results suggest that the RecX Hs protein negatively modulates the RecA Hs activities by protein-protein interactions and also by DNA-protein interactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

3 '-S-Phosphorothiolate linkages incorporated into an oligodeoxynucleotide have been shown to stabilise duplex formation with a complementary RNA strand, but destabilise a duplex formed with a complementary DNA strand. The four-stranded i-motif structure is also stabilised this modification.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To analyse the mechanism and kinetics of DNA strand cleavages catalysed by the serine recombinase Tn3 resolvase, we made modified recombination sites with a single-strand nick in one of the two DNA strands. Resolvase acting on these sites cleaves the intact strand very rapidly, giving an abnormal half-site product which accumulates. We propose that these reactions mimic second-strand cleavage of an unmodified site. Cleavage occurs in a synapse of two sites, held together by a resolvase tetramer; cleavage at one site stimulates cleavage at the partner site. After cleavage of a nicked-site substrate, the half-site that is not covalently linked to a resolvase subunit dissociates rapidly from the synapse, destabilizing the entire complex. The covalent resolvase–DNA linkages in the natural reaction intermediate thus perform an essential DNA-tethering function. Chemical modifications of a nicked-site substrate at the positions of the scissile phosphodiesters result in abolition or inhibition of resolvase-mediated cleavage and effects on resolvase binding and synapsis, providing insight into the serine recombinase catalytic mechanism and how resolvase interacts with the substrate DNA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Duplication at the Xq28 band including the MECP2 gene is one of the most common genomic rearrangements identified in neurodevelopmentally delayed males. Such duplications are non-recurrent and can be generated by a non-homologous end joining (NHEJ) mechanism. We investigated the potential mechanisms for MECP2 duplication and examined whether genomic architectural features may play a role in their origin using a custom designed 4-Mb tiling-path oligonucleotide array CGH assay. Each of the 30 patients analyzed showed a unique duplication varying in size from similar to 250 kb to similar to 2.6 Mb. Interestingly, in 77% of these non-recurrent duplications, the distal breakpoints grouped within a 215 kb genomic interval, located 47 kb telomeric to the MECP2 gene. The genomic architecture of this region contains both direct and inverted low-copy repeat (LCR) sequences; this same region undergoes polymorphic structural variation in the general population. Array CGH revealed complex rearrangements in eight patients; in six patients the duplication contained an embedded triplicated segment, and in the other two, stretches of non-duplicated sequences occurred within the duplicated region. Breakpoint junction sequencing was achieved in four duplications and identified an inversion in one patient, demonstrating further complexity. We propose that the presence of LCRs in the vicinity of the MECP2 gene may generate an unstable DNA structure that can induce DNA strand lesions, such as a collapsed fork, and facilitate a Fork Stalling and Template Switching event producing the complex rearrangements involving MECP2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: Commercially pure titanium alloys are currently used as metallic biomaterials in implantology. Corrosion phenomena appear to play a decisive role in metallic implant long-term behavior. Thus, the goal of this study was to examine the genotoxic potential of corrosion eluates obtained from dental implants using Chinese ovary hamster cells in vitro by the single-cell gel (comet) assay. This technique detects deoxyribonucleic acid strand breaks in individual cells in alkaline conditions.Materials and Methods: the materials tested included 3 dental implants commercially available. Each of the tested materials was corroded in a solution consisting of equal amounts of acetic acid and sodium chloride (0.1 M) for 1, 3, 7, 14, and 21 days. The Chinese ovary hamster cultures were then exposed to all corrosion eluates obtained from endosseous dental implants for 30 minutes at 37 degrees C.Results: None of the eluates was found to exhibit genotoxicity, regardless of the type of dental implant used.Conclusion: the results suggest that all dental implants tested in this study did not induce deoxyribonucleic acid breakage as depicted by the single-cell gel (comet) assay.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Paracoccidioidomycosis is a systemic fungal infection caused by Paracoccidioides brasiliensis. As infectious diseases can cause DNA damage, the authors aimed at analyzing DNA breakage in peripheral blood cells of patients with paracoccidioidomycosis by using the comet assay. The results suggested that paracoccidioidomycosis does not cause genotoxicity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The transcription process is crucial to life and the enzyme RNA polymerase (RNAP) is the major component of the transcription machinery. The development of single-molecule techniques, such as magnetic and optical tweezers, atomic-force microscopy and single-molecule fluorescence, increased our understanding of the transcription process and complements traditional biochemical studies. Based on these studies, theoretical models have been proposed to explain and predict the kinetics of the RNAP during the polymerization, highlighting the results achieved by models based on the thermodynamic stability of the transcription elongation complex. However, experiments showed that if more than one RNAP initiates from the same promoter, the transcription behavior slightly changes and new phenomenona are observed. We proposed and implemented a theoretical model that considers collisions between RNAPs and predicts their cooperative behavior during multi-round transcription generalizing the Bai et al. stochastic sequence-dependent model. In our approach, collisions between elongating enzymes modify their transcription rate values. We performed the simulations in Mathematica® and compared the results of the single and the multiple-molecule transcription with experimental results and other theoretical models. Our multi-round approach can recover several expected behaviors, showing that the transcription process for the studied sequences can be accelerated up to 48% when collisions are allowed: the dwell times on pause sites are reduced as well as the distance that the RNAPs backtracked from backtracking sites. © 2013 Costa et al.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Problem The most common DNA lesion generated by oxidative stress (OS) is 7, 8-dihydro-8-oxoguanine (8-oxoG) whose excision repair is performed by 8-oxoguanine glycosylase (OGG1). We investigated OGG1 expression changes in fetal membranes from spontaneous preterm birth (PTB) and preterm premature rupture of the membranes (pPROM) and its changes in vitro in normal fetal membranes exposed to OS inducer water-soluble cigarette smoke extract (CSE). Method of study DNA damage was determined in amnion cells treated with CSE by comet and FLARE assays. OGG1 mRNA expression and localization in fetal membranes from clinical specimens and in normal term membranes exposed to CSE were examined by QRT-PCR and by immunohistochemistry. Results DNA strand and base damage was seen in amnion cells exposed to CSE. OGG1 expression was 2.5-fold higher in PTB samples compared with pPROM (P=0.045). No significant difference was seen between term and pPROM or PTB and term. CSE treatment showed a nonsignificant decrease in OGG1. OGG1 was localized to both amnion and chorion with less intense staining in pPROM and CSE-treated membranes. Conclusion Increased OS-induced DNA damage predominated by 8-oxoG is likely to persist in fetal cells due to reduced availability of base excision repair enzyme OGG1. This can likely lead to fetal cell senescence associated with some adverse pregnancy outcome.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Human Papillomavirus (HPV) belongs to the Papillomaviridae family and has a capsid and a single DNA strand. Its infection occurs mainly through sexual intercourse, having an important tropism for skin and mucosal cells. Aim: To evaluate the HPV presence in normal oral mucosa of asymptomatic subjects and; in parallel, to correlate social behavioral habits with the virus. Materials and Methods: Contemporary cohort cross-sectional study. The HPV was found by PCR, using general primers MY09/11 in 125 oral mucosa samples submitted to DNA extraction and PCR to search for the beta-globin gene in order to assess the quality of the extracted DNA. In parallel, we carried out a study of behavioral issues associated with the patients. Results: All the samples had a positive diagnosis of the beta-hemoglobin gene. HPV was diagnosed in 23.2% of the samples analyzed. Conclusion: The virus was present in 29 of the 125 patients, without them having any clinical-pathological manifestation associated with the HPV. As to the social behavior of the patients, we concluded that oral sex is statistically correlated to the virus, and besides the HPV has been statistically more present in female patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Molecular dynamics simulations have been used to explore the conformational flexibility of a PNA·DNA·PNA triple helix in aqueous solution. Three 1.05 ns trajectories starting from different but reasonable conformations have been generated and analyzed in detail. All three trajectories converge within about 300 ps to produce stable and very similar conformational ensembles, which resemble the crystal structure conformation in many details. However, in contrast to the crystal structure, there is a tendency for the direct hydrogen-bonds observed between the amide hydrogens of the Hoogsteen-binding PNA strand and the phosphate oxygens of the DNA strand to be replaced by water-mediated hydrogen bonds, which also involve pyrimidine O2 atoms. This structural transition does not appear to weaken the triplex structure but alters groove widths and so may relate to the potential for recognition of such structures by other ligands (small molecules or proteins). Energetic analysis leads us to conclude that the reason that the hybrid PNA/DNA triplex has quite different helical characteristics from the all-DNA triplex is not because the additional flexibility imparted by the replacement of sugar−phosphate by PNA backbones allows motions to improve base-stacking but rather that base-stacking interactions are very similar in both types of triplex and the driving force comes from weak but definate conformational preferences of the PNA strands.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

9-$\beta$-D-arabinofuranosyl-2-fluoroadenine (F-ara-A) is an analogue of adenosine and 2$\sp\prime$-deoxyadenosine with potent antitumor activity both in vitro and in vivo. The mechanism of action of F-ara-A was evaluated both in whole cells and in experimental systems with purified enzymes. F-ara-A was converted to its 5$\sp\prime$-triphosphate F-ara-ATP in cells and then incorporated into DNA in a self-limiting manner. About 98% of the incorporated F-ara-AMP residues were located at the 3$\sp\prime$-termini of DNA strands, suggesting a chain termination property of this compound. DNA synthesis in CEM cells was inhibited by F-ara-A treatment with an IC$\sb{50}$ value of 1 $\mu$M. Cells were not able to restore the normal level of DNA synthesis even after being cultured in drug-free medium for 40 h. A DNA primer extension assay with M13mp18(+) single-stranded DNA template using purified human DNA polymerases $\alpha$ and further revealed that F-ara-ATP competed with dATP for incorporation into the A sites of the elongating DNA strands. The incorporation of F-ara-AMP into DNA resulted in a termination of DNA synthesis at the incorporated A sites. Pol $\alpha$ and $\delta$ were not able to efficiently extend the DNA primer with F-ara-AMP at its 3$\sp\prime$-end. Furthermore, the presence of F-ara-AMP at the 3$\sp\prime$-end of an oligodeoxyribonucleotide impaired its ligation with an adjacent DNA fragment by human and T4 ligases. Human DNA polymerase $\alpha$ incorporated more F-ara-AMP into DNA than polymerase $\delta$ and was more sensitive to the inhibition by F-ara-ATP, suggesting that polymerase $\alpha$ may be a preferred target for this analogue. On the other hand, DNA-dependent nucleotide turnover experiments and sequencing gel analysis demonstrated that DNA polymerase $\delta$ was able to remove the incorporated F-ara-AMP residue from the 3$\sp\prime$-end of the DNA strand with its 3$\sp\prime$-5$\sp\prime$ exonuclease activity in vitro, subsequently permitting further elongation of the DNA strand.^ The incorporation of F-ara-AMP into DNA was linearly correlated both with the inhibition of DNA synthesis and with the loss of clonogenicity. Termination of DNA synthesis and deletion of genetic material resulted from F-ara-AMP incorporation may be the mechanism responsible for cytotoxicity of F-ara-A. (Abstract shortened with permission of author.) ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Peptide nucleic acids (PNA) are mimics of nucleic acids with a peptidic backbone. Duplexes and triplexes formed between PNA and DNA or RNA possess remarkable thermal stability, they are resistant to nuclease cleavage and can better discriminate mismatches. Understanding the mechanism for the tight binding between PNA and oligonucleotides is important for the design and development of better PNA-based drugs.^ We have performed molecular dynamics (MD) simulations of 8-mer PNA/DNA duplex and two analogous duplexes with chiral modification of PNA strand (D- or L-Alanine modification). MD simulations were performed with explicit water and Na$\sp{+}$ counter ions. The 1.5-ns simulations were carried out with AMBER using periodic boundary and particle mesh Ewald summation. The point charges for PNA monomers were derived from fitting electrostatic potentials, obtained from ab initio calculation, to atomic centers using RESP. Derived charges reveal significantly altered charge distribution on the PNA bases and predict the Watson-Crick H-bonds involving PNA to be stronger. Results from NMR studies investigating H-bond interactions between DNA-DNA and DNA-PNA base pairs in non-polar environment are consistent with this prediction. MD simulations demonstrated that the PNA strand is more flexible than the DNA strand in the same duplex. That this flexibility might be important for the duplex stability is tested by introducing modification into the PNA backbones. Results from MD simulation revealed dramatically altered structures for the modified PNA-DNA duplexes. Consistent with previous NMR results, we also found no intrachain hydrogen bonds between O7$\sp\prime$ and N1$\sp\prime$ of the neighboring residues in our MD study. Our study reveals that in addition to the lack of charge repulsion, stronger Watson-Crick hydrogen bonds together with flexible backbone are important factors for the enhanced stability of the PNA-DNA duplex.^ In a related study, we have developed an application of Gly-Gly-His-(Gly)$\sb3$-PNA conjugate as an artificial nuclease. We were able to demonstrate cleavage of single stranded DNA at a single site upon Ni(II) binding to Gly-Gly-His tripeptide and activation of nuclease with monoperoxyphthalic acid. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The sigma (σ) subunit of eubacterial RNA polymerase is essential for initiation of transcription at promoter sites. σ factor directs the RNA polymerase core subunits ( a2bb′ ) to the promoter consensus elements and thereby confers selectivity for transcription initiation. The N-terminal domain (region 1.1) of Escherichia coli σ70 has been shown to inhibit DNA binding by the C-terminal DNA recognition domains when σ is separated from the core subunits. Since DNA recognition by RNA polymerase is the first step in transcription, it seemed plausible that region 1 might also influence initiation processes subsesquent to DNA binding. This study explores the functional roles of regions 1.1 and 1.2 of σ70 in transcription initiation. Analysis in vitro of the transcriptional properties of a series of N-terminally truncated σ70 derivates revealed a critical role for region 1.1 at several key stages of initiation. Deletion of the first 75 to 100 amino acids of σ70 (region 1.1) resulted in both a slow rate of transition from a closed promoter complex to a DNA-strand-separated open complex, as well as a reduced efficiency of transition from the open complex to a transcriptionally active open complex. These effects were partially reversed by addition of a polypeptide containing region 1.1 in trans. Therefore, region 1.1 not only modulates DNA binding but is important for efficient transcription initiation, once a closed complex has formed. A deletion of the first 133 amino acids which removes both regions 1.1 and 1.2 resulted in arrest of initiation at the earliest closed complex, suggesting that region 1.2 is required for open complex formation. Mutagenesis of region 1.1 uncovered a mechanistically important role for isoleucine at position 53 (I53). Substitution of I53 with alanine created a σ factor that associated with the core subunits to form holoenzyme, but the holoenzyme was severely deficient for promoter binding. The I53A phenotype was suppressed in vivo by truncation of five amino acids from the C-terminus of σ 70. These observations are consistent with a model in which σ 70I53A fails to undergo a critical conformational change upon association with the core subunits, which is needed to expose the DNA-binding domains and confer promoter recognition capability upon holoenzyme. To understand the basis of the autoinhibitory properties of the σ70 N-terminal domain, in the absence of core RNA polymerase, a preliminary physical assessment of the interdomain interactions within the σ70 subunit was launched. Results support a model in which N-terminal amino acids are in close proximity to residues in the C-terminus of the σ 70 polypeptide. ^