957 resultados para Directly modulated semiconductor lasers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drought is the main constraint on wheat yield in Mediterranean conditions. The photosynthesis, chlorophyll fluorescence and plant growth parameters of durum wheat (Triticum turgidum, L. var. durum) were compared at three [CO2] (i.e., depleted 260 ppm, current 400ppm and elevated 700 ppm) in plants subjected to twowater regimes (i.e.,well-wateredWW, and mildwater stress by drought orwater deficit WS), during pre-anthesis, post-anthesis and the end of grain filling. We showed that [CO2] effects on plants are modulated by water availability. Plants at depleted [CO2] showed photosynthetic acclimation (i.e., up-regulation) and reduced plant biomass and Harvest Index, but depleted [CO2] combined with WS has a more negative impact on plants with decreases in C assimilation and biomass. Plants at elevated [CO2] had decreased plant growth and photosynthesis in response to a down-regulation mechanism resulting from a decrease in Rubisco and N content, but plants exposed to a combination of elevated [CO2] and WS were the most negatively affected (e.g., on plant biomass).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides an up-to-date critical review of methods for diamond synthesis by lasers. A provisional classification of synthesizing methods is carried out, in order to present a varied and heterogeneous experimental work that is as clear as possible. Laser diamond CVD methods involve chemical processes in a carbon-containing system induced by specific absorption of laser radiation, while diamond PVD methods involve physical processes induced by an intense, highly-directed laser beam. Different methods involving coupled, simultaneous action of lasers and classic CVD agents are suggested and discussed as prospective approaches for diamond synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potential energy and dipole moment curves for the HCl molecule were computed. Calculations were performed at different levels of theory (DFT, MRCI). Spectroscopic properties are reported and compared with experimental data, for validating the theoretical approaches. Interaction of infrared radiation with HCl is simulated using the wave packet formalism. The quantum control model for population dynamics of the vibrational levels, based on pi-pulse theory, is applied. The results demonstrate that wavepackets with specific composition can be built with short infrared laser pulses and provide the basis for studies of H + HCl collision dynamics with infrared laser excitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this thesis is to investigate the thermal loading of medium voltage three-level NPC inverter’s semiconductor IGCT switches in different operation points. The objective is to reach both a fairly accurate off-line simulation program and also so simple a simulation model that its implementation into an embedded system could be reasonable in practice and a real time use should become feasible. Active loading limitation of the inverter can be realized with a thermal model which is practical in a real time use. Determining of the component heating has been divided into two parts; defining of component losses and establishing the structure of a thermal network. Basics of both parts are clarified. The simulation environment is Matlab-Simulink. Two different models are constructed – a more accurate one and a simplified one. Potential simplifications are clarified with the help of the first one. Simplifications are included in the latter model and the functionalities of both models are compared. When increasing the calculation time step a decreased number of considered components and time constants of the thermal network can be used in the simplified model. Heating of a switching component is dependent on its topological position and inverter’s operation point. The output frequency of the converter defines mainly which one of the switching components is – because of its losses and heating – the performance limiting component of the converter. Comparison of results given by different thermal models demonstrates that with larger time steps, describing of fast occurring switching losses becomes difficult. Generally articles and papers dealing with this subject are written for two-level inverters. Also inverters which apply direct torque control (DTC) are investigated rarely from the heating point of view. Hence, this thesis completes the former material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Master's thesis is devoted to semiconductor samples study using time-resolved photoluminescence. This method allows investigating recombination in semiconductor samples in order to develop quality of optoelectronic device. An additional goal was the method accommodation for low-energy-gap materials. The first chapter gives a brief intercourse into the basis of semiconductor physics. The key features of the investigated structures are noted. The usage area of the results covers saturable semiconductor absorber mirrors, disk lasers and vertical-external-cavity surface-emittinglasers. The experiment set-up is described in the second chapter. It is based on up-conversion procedure using a nonlinear crystal and involving the photoluminescent emission and the gate pulses. The limitation of the method was estimated. The first series of studied samples were grown at various temperatures and they suffered rapid thermal annealing. Further, a latticematched and metamorphically grown samples were compared. Time-resolved photoluminescence method was adapted for wavelengths up to 1.5 µm. The results allowed to specify the optimal substrate temperature for MBE process. It was found that the lattice-matched sample and the metamorphically grown sample had similar characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O presente trabalho investiga a degradação fotoeletrocatalítica do corante Azul Básico 41 (AB 41) amplamente utilizado na tintura de fibras sintéticas, utilizando um semicondutor Ti/TiO2 como fotoanodo. 100% de degradação foi obtida após 60 min de tratamento de 8,33x10-5 mol L-1 do corante em 0,1 mol L−1 Na2SO4, pH 2 sob densidade de corrente de 0,40 mA cm−2 e irradiação UV. Ainda foi obtido 80% de remoção de carbono orgânico total, cuja oxidação segue uma reação de pseudo-primeira ordem com constante de velocidade inicial de -0,040 mim-1 e uma eficiência de corrente de 51%. Os resultados são superiores á fotocatálise convencional nas mesmas condições sem a polarização do fotoanodo que leva a 65% de mineralização sob constante de velocidade de -0,024 mim-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I likhet med vanliga plaster är de π-konjugerade polymererna flexibla, lösliga och processbara vid låga temperaturer (< 150 ºC). Därutöver har de egenskapen att leda ström. Konduktivitetsintervallet är brett och omfattar nästintill metallisk ledningsförmåga å ena sidan, via halvledarkonduktiva till isolerande å andra sidan. Polymererna utgörs av regelbundna kedjor av kolatomer och associeras sålunda till organiska material. Sedan de första vetenskapliga rapporterna publicerades vid slutet av 1970-talet har π-konjugerade polymerer använts och utvecklats i exempelvis solceller, dioder, lysdioder och transistorer. Nobelpriset i kemi tilldelades år 2000 åt Hideki Shirakawa, Alan J. Heeger och Alan G. MacDiarmid för upptäckten och utvecklandet av ledande polymerer. I min avhandling har jag arbetat med att utveckla och förstå lågspännings jonmodulerade organiska transistorer. Två typer av jonmodulerade organiska transistorer studeras: (1) den jonmodulerade organiska fälteffekt transistorn (jonmodulerade OFETen), som utgör den centrala transistorn i avhandlingen, samt (2) den elektrokemiska transistorn. Den första typen fungerar som en konventionell OFET. Strömmen i halvledaren moduleras av det elektriska fältet över isolatorn. Med användandet av en elektrolyt ”isolator” orsakar polariseringen av jonerna däremot ett högt elektriskt fält vid elektrolyt/halvledargränssnittet och man åstadkommer modulering av strömmen redan vid några volts drivspänningar. I den andra typen utnyttjas elektrokemi för att medelst reduktion/oxidation modulera strömmen i den π-konjugerade polymeren. Ett viktigt ändamål i avhandlingen har också varit att kunna tillverka transistorerna med masstillverkningsmetoder. I avhandlingen presenteras de jonmodulerade organiska transistorernas möjlighet att framställas med masstillverkningsmetoder. Nya koncept introduceras och svagheter identifieras. Skillnaderna mellan OFETen, jonmodulerade OFETen och den elektrokemiska transistorn klargörs. Arbetet skall däremot inte anses fullbordat utan forskningen fortgår för att kringgå svagheterna, öka på transistorernas stabilitet och framförallt tillämpa dem i innovativa applikationer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of intensity-modulated radiotherapy (IMRT) has increased extensively in the modern radiotherapy (RT) treatments over the past two decades. Radiation dose distributions can be delivered with higher conformality with IMRT when compared to the conventional 3D-conformal radiotherapy (3D-CRT). Higher conformality and target coverage increases the probability of tumour control and decreases the normal tissue complications. The primary goal of this work is to improve and evaluate the accuracy, efficiency and delivery techniques of RT treatments by using IMRT. This study evaluated the dosimetric limitations and possibilities of IMRT in small (treatments of head-and-neck, prostate and lung cancer) and large volumes (primitive neuroectodermal tumours). The dose coverage of target volumes and the sparing of critical organs were increased with IMRT when compared to 3D-CRT. The developed split field IMRT technique was found to be safe and accurate method in craniospinal irradiations. By using IMRT in simultaneous integrated boosting of biologically defined target volumes of localized prostate cancer high doses were achievable with only small increase in the treatment complexity. Biological plan optimization increased the probability of uncomplicated control on average by 28% when compared to standard IMRT delivery. Unfortunately IMRT carries also some drawbacks. In IMRT the beam modulation is realized by splitting a large radiation field to small apertures. The smaller the beam apertures are the larger the rebuild-up and rebuild-down effects are at the tissue interfaces. The limitations to use IMRT with small apertures in the treatments of small lung tumours were investigated with dosimetric film measurements. The results confirmed that the peripheral doses of the small lung tumours were decreased as the effective field size was decreased. The studied calculation algorithms were not able to model the dose deficiency of the tumours accurately. The use of small sliding window apertures of 2 mm and 4 mm decreased the tumour peripheral dose by 6% when compared to 3D-CRT treatment plan. A direct aperture based optimization (DABO) technique was examined as a solution to decrease the treatment complexity. The DABO IMRT technique was able to achieve treatment plans equivalent with the conventional IMRT fluence based optimization techniques in the concave head-and-neck target volumes. With DABO the effective field sizes were increased and the number of MUs was reduced with a factor of two. The optimality of a treatment plan and the therapeutic ratio can be further enhanced by using dose painting based on regional radiosensitivities imaged with functional imaging methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The understanding and engineering of bismuth (Bi) containing semiconductor surfaces are signi cant in the development of novel semiconductor materials for electronic and optoelectronic devices such as high-e ciency solar cells, lasers and light emitting diodes. For example, a Bi surface layer can be used as a surfactant which oats on a III-V compound-semiconductor surface during the epitaxial growth of IIIV lms. This Bi surfactant layer improves the lm-growth conditions if compared to the growth without the Bi layer. Therefore, detailed knowledge of the properties of the Bi/III-V surfaces is needed. In this thesis, well-de ned surface layers containing Bi have been produced on various III-V semiconductor substrates. The properties of these Bi-induced surfaces have been measured by low-energy electron di raction (LEED), scanning-tunneling microscopy and spectroscopy (STM), and synchrotron-radiation photoelectron spectroscopy. The experimental results have been compared with theoretically calculated results to resolve the atomic structures of the studied surfaces. The main ndings of this research concern the determination of the properties of an unusual Bi-containing (2×1) surface structure, the discovery and characterization of a uniform pattern of Bi nanolines, and the optimization of the preparation conditions for this Bi-nanoline pattern.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is devoted to understanding and improving technologically important III-V compound semiconductor (e.g. GaAs, InAs, and InSb) surfaces and interfaces for devices. The surfaces and interfaces of crystalline III-V materials have a crucial role in the operation of field-effect-transistors (FET) and highefficiency solar-cells, for instance. However, the surfaces are also the most defective part of the semiconductor material and it is essential to decrease the amount of harmful surface or interface defects for the next-generation III-V semiconductor device applications. Any improvement in the crystal ordering at the semiconductor surface reduces the amount of defects and increases the material homogeneity. This is becoming more and more important when the semiconductor device structures decrease to atomic-scale dimensions. Toward that target, the effects of different adsorbates (i.e., Sn, In, and O) on the III-V surface structures and properties have been investigated in this work. Furthermore, novel thin-films have been synthesized, which show beneficial properties regarding the passivation of the reactive III-V surfaces. The work comprises ultra-high-vacuum (UHV) environment for the controlled fabrication of atomically ordered III-V(100) surfaces. The surface sensitive experimental methods [low energy electron diffraction (LEED), scanning tunneling microscopy/spectroscopy (STM/STS), and synchrotron radiation photoelectron spectroscopy (SRPES)] and computational density-functionaltheory (DFT) calculations are utilized for elucidating the atomic and electronic properties of the crucial III-V surfaces. The basic research results are also transferred to actual device tests by fabricating metal-oxide-semiconductor capacitors and utilizing the interface sensitive measurement techniques [capacitance voltage (CV) profiling, and photoluminescence (PL) spectroscopy] for the characterization. This part of the thesis includes the instrumentation of home-made UHV-compatible atomic-layer-deposition (ALD) reactor for growing good quality insulator layers. The results of this thesis elucidate the atomic structures of technologically promising Sn- and In-stabilized III-V compound semiconductor surfaces. It is shown that the Sn adsorbate induces an atomic structure with (1×2)/(1×4) surface symmetry which is characterized by Sn-group III dimers. Furthermore, the stability of peculiar ζa structure is demonstrated for the GaAs(100)-In surface. The beneficial effects of these surface structures regarding the crucial III-V oxide interface are demonstrated. Namely, it is found that it is possible to passivate the III-V surface by a careful atomic-scale engineering of the III-V surface prior to the gate-dielectric deposition. The thin (1×2)/(1×4)-Sn layer is found to catalyze the removal of harmful amorphous III-V oxides. Also, novel crystalline III-V-oxide structures are synthesized and it is shown that these structures improve the device characteristics. The finding of crystalline oxide structures is exploited by solving the atomic structure of InSb(100)(1×2) and elucidating the electronic structure of oxidized InSb(100) for the first time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays advanced simulation technologies of semiconductor devices occupies an important place in microelectronics production process. Simulation helps to understand devices internal processes physics, detect new effects and find directions for optimization. Computer calculation reduces manufacturing costs and time. Modern simulation suits such as Silcaco TCAD allow simulating not only individual semiconductor structures, but also these structures in the circuit. For that purpose TCAD include MixedMode tool. That tool can simulate circuits using compact circuit models including semiconductor structures with their physical models. In this work, MixedMode is used for simulating transient current technique setup, which include detector and supporting electrical circuit. This technique was developed by RD39 collaboration project for investigation radiation detectors radiation hard properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis is devoted to a theoretical study of resonant tunneling phenomena in semiconductor heterostructures and nanostructures. It considers several problems relevant to modern solid state physics. Namely these are tunneling between 2D electron layers with spin-orbit interaction, tunnel injection into molecular solid material, resonant tunnel coupling of a bound state with continuum and resonant indirect exchange interaction mediated by a remote conducting channel. A manifestation of spin-orbit interaction in the tunneling between two 2D electron layers is considered. General expression is obtained for the tunneling current with account of Rashba and Dresselhaus types of spin-orbit interaction and elastic scattering. It is demonstrated that the tunneling conductance is very sensitive to relation between Rashba and Dresselhaus contributions and opens possibility to determine the spin-orbit interaction parameters and electron quantum lifetime in direct tunneling experiments with no external magnetic field applied. A microscopic mechanism of hole injection from metallic electrode into organic molecular solid (OMS) in high electric field is proposed for the case when the molecules ionization energy exceeds work function of the metal. It is shown that the main contribution to the injection current comes from direct isoenergetic transitions from localized states in OMS to empty states in the metal. Strong dependence of the injection current on applied voltage originates from variation of the number of empty states available in the metal rather than from distortion of the interface barrier. A theory of tunnel coupling between an impurity bound state and the 2D delocalized states in the quantum well (QW) is developed. The problem is formulated in terms of Anderson-Fano model as configuration interaction between the carrier bound state at the impurity and the continuum of delocalized states in the QW. An effect of this interaction on the interband optical transitions in the QW is analyzed. The results are discussed regarding the series of experiments on the GaAs structures with a -Mn layer. A new mechanism of ferromagnetism in diluted magnetic semiconductor heterosructures is considered, namely the resonant enhancement of indirect exchange interaction between paramagnetic centers via a spatially separated conducting channel. The underlying physical model is similar to the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction; however, an important difference relevant to the low-dimensional structures is a resonant hybridization of a bound state at the paramagnetic ion with the continuum of delocalized states in the conducting channel. An approach is developed, which unlike RKKY is not based on the perturbation theory and demonstrates that the resonant hybridization leads to a strong enhancement of the indirect exchange. This finding is discussed in the context of the known experimental data supporting the phenomenon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myocardial contractility depends on several mechanisms such as coronary perfusion pressure (CPP) and flow as well as on a1-adrenoceptor stimulation. Both effects occur during the sympathetic stimulation mediated by norepinephrine. Norepinephrine increases force development in the heart and produces vasoconstriction increasing arterial pressure and, in turn, CPP. The contribution of each of these factors to the increase in myocardial performance needs to be clarified. Thus, in the present study we used two protocols: in the first we measured mean arterial pressure, left ventricular pressure and rate of rise of left ventricular pressure development in anesthetized rats (N = 10) submitted to phenylephrine (PE) stimulation before and after propranolol plus atropine treatment. These observations showed that in vivo a1-adrenergic stimulation increases left ventricular-developed pressure (P<0.05) together with arterial blood pressure (P<0.05). In the second protocol, we measured left ventricular isovolumic systolic pressure (ISP) and CPP in Langendorff constant flow-perfused hearts. The hearts (N = 7) were perfused with increasing flow rates under control conditions and PE or PE + nitroprusside (NP). Both CPP and ISP increased (P<0.01) as a function of flow. CPP changes were not affected by drug treatment but ISP increased (P<0.01). The largest ISP increase was obtained with PE + NP treatment (P<0.01). The results suggest that both mechanisms, i.e., direct stimulation of myocardial a1-adrenoceptors and increased flow, increased cardiac performance acting simultaneously and synergistically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ca2+-modulated, dimeric proteins of the EF-hand (helix-loop-helix) type, S100A1 and S100B, that have been shown to inhibit microtubule (MT) protein assembly and to promote MT disassembly, interact with the type III intermediate filament (IF) subunits, desmin and glial fibrillary acidic protein (GFAP), with a stoichiometry of 2 mol of IF subunit/mol of S100A1 or S100B dimer and an affinity of 0.5-1.0 µM in the presence of a few micromolar concentrations of Ca2+. Binding of S100A1 and S100B results in inhibition of desmin and GFAP assemblies into IFs and stimulation of the disassembly of preformed desmin and GFAP IFs. S100A1 and S100B interact with a stretch of residues in the N-terminal (head) domain of desmin and GFAP, thereby blocking the head-to-tail process of IF elongation. The C-terminal extension of S100A1 (and, likely, S100B) represents a critical part of the site that recognizes desmin and GFAP. S100B is localized to IFs within cells, suggesting that it might have a role in remodeling IFs upon elevation of cytosolic Ca2+ concentration by avoiding excess IF assembly and/or promoting IF disassembly in vivo. S100A1, that is not localized to IFs, might also play a role in the regulation of IF dynamics by binding to and sequestering unassembled IF subunits. Together, these observations suggest that S100A1 and S100B may be regarded as Ca2+-dependent regulators of the state of assembly of two important elements of the cytoskeleton, IFs and MTs, and, potentially, of MT- and IF-based activities.