930 resultados para Dicumyl Peroxide
Resumo:
Detection canines represent the fastest and most versatile means of illicit material detection. This research endeavor in its most simplistic form is the improvement of detection canines through training, training aids, and calibration. This study focuses on developing a universal calibration compound for which all detection canines, regardless of detection substance, can be tested daily to ensure that they are working with acceptable parameters. Surrogate continuation aids (SCAs) were developed for peroxide based explosives along with the validation of the SCAs already developed within the International Forensic Research Institute (IFRI) prototype surrogate explosives kit. Storage parameters of the SCAs were evaluated to give recommendations to the detection canine community on the best possible training aid storage solution that minimizes the likelihood of contamination. Two commonly used and accepted detection canine imprinting methods were also evaluated for the speed in which the canine is trained and their reliability. As a result of the completion of this study, SCAs have been developed for explosive detection canine use covering: peroxide based explosives, TNT based explosives, nitroglycerin based explosives, tagged explosives, plasticized explosives, and smokeless powders. Through the use of these surrogate continuation aids a more uniform and reliable system of training can be implemented in the field than is currently used today. By examining the storage parameters of the SCAs, an ideal storage system has been developed using three levels of containment for the reduction of possible contamination. The developed calibration compound will ease the growing concerns over the legality and reliability of detection canine use by detailing the daily working parameters of the canine, allowing for Daubert rules of evidence admissibility to be applied. Through canine field testing, it has been shown that the IFRI SCAs outperform other commercially available training aids on the market. Additionally, of the imprinting methods tested, no difference was found in the speed in which the canines are trained or their reliability to detect illicit materials. Therefore, if the recommendations discovered in this study are followed, the detection canine community will greatly benefit through the use of scientifically validated training techniques and training aids.
Resumo:
Starches are applied in several fields of industry. Amylose and amylopectin (natural polymers) constitute the starch in vegetable cells. In some processes native starches cannot support high stress conditions (high temperatures/acidity). Then, modification methods are developed aiming the improving of starch technological utilization. Oxidative modification with H2O2 has been the subject of many researches. UV rays as well microwave irradiation can be used. The aim was to confirm possible thermogravimetric alterations in native cassava starch (A) granules due to a double starch modification: 1st step) H2O2 standard solutions 0.1 mol L-1 (B), 0.2 mol L-1 (C) and 0.3 mol L-1 (D) and UV rays exposure for 1h; 2nd step) microwave irradiation for 5 min. The results of thermogravimetric curves (TG-DTA) show that the behaviors of the starch proprieties were modified. Highlighting, the modified samples C and D showed a decrease on the thermal stability step. This alteration turned them suitable to many field of industry like the paper one.
Resumo:
Tissue damage resulting from the extracellular production of HOCl (hypochlorous acid) by the MPO (myeloperoxidase)-hydrogen peroxide-chloride system of activated phagocytes is implicated as a key event in the progression of a number of human inflammatory diseases. Consequently, there is considerable interest in the development of therapeutically useful MPO inhibitors. Nitroxides are well established antioxidant compounds of low toxicity that can attenuate oxidative damage in animal models of inflammatory disease. They are believed to exert protective effects principally by acting as superoxide dismutase mimetics or radical scavengers. However, we show here that nitroxides can also potently inhibit MPO-mediated HOCl production, with the nitroxide 4-aminoTEMPO inhibiting HOCl production by MPO and by neutrophils with IC50 values of approx. 1 and 6 μM respectively. Structure–activity relationships were determined for a range of aliphatic and aromatic nitroxides, and inhibition of oxidative damage to two biologically-important protein targets (albumin and perlecan) are demonstrated. Inhibition was shown to involve one-electron oxidation of the nitroxides by the compound I form of MPO and accumulation of compound II. Haem destruction was also observed with some nitroxides. Inhibition of neutrophil HOCl production by nitroxides was antagonized by neutrophil-derived superoxide, with this attributed to superoxide-mediated reduction of compound II. This effect was marginal with 4-aminoTEMPO, probably due to the efficient superoxide dismutase-mimetic activity of this nitroxide. Overall, these data indicate that nitroxides have considerable promise as therapeutic agents for the inhibition of MPO-mediated damage in inflammatory diseases.
Resumo:
Cardiovascular diseases refer to the class of diseases that involve the heart or blood vessels (arteries and veins). Examples of medical devices for treating the cardiovascular diseases include ventricular assist devices (VADs), artificial heart valves and stents. Metallic biomaterials such as titanium and its alloy are commonly used for ventricular assist devices. However, titanium and its alloy show unacceptable thrombosis, which represents a major obstacle to be overcome. Polyurethane (PU) polymer has better blood compatibility and has been used widely in cardiovascular devices. Thus one aim of the project was to coat a PU polymer onto a titanium substrate by increasing the surface roughness, and surface functionality. Since the endothelium of a blood vessel has the most ideal non-thrombogenic properties, it was the target of this research project to grow an endothelial cell layer as a biological coating based on the tissue engineering strategy. However, seeding endothelial cells on the smooth PU coating surfaces is problematic due to the quick loss of seeded cells which do not adhere to the PU surface. Thus it was another aim of the project to create a porous PU top layer on the dense PU pre-layer-coated titanium substrate. The method of preparing the porous PU layer was based on the solvent casting/particulate leaching (SCPL) modified with centrifugation. Without the step of centrifugation, the distribution of the salt particles was not uniform within the polymer solution, and the degree of interconnection between the salt particles was not well controlled. Using the centrifugal treatment, the pore distribution became uniform and the pore interconnectivity was improved even at a high polymer solution concentration (20%) as the maximal salt weight was added in the polymer solution. The titanium surfaces were modified by alkli and heat treatment, followed by functionlisation using hydrogen peroxide. A silane coupling agent was coated before the application of the dense PU pre-layer and the porous PU top layer. The ability of the porous top layer to grow and retain the endothelial cells was also assessed through cell culture techniques. The bonding strengths of the PU coatings to the modified titanium substrates were measured and related to the surface morphologies. The outcome of the project is that it has laid a foundation to achieve the strategy of endothelialisation for the blood compatibility of medical devices. This thesis is divided into seven chapters. Chapter 2 describes the current state of the art in the field of surface modification in cardiovascular devices such as ventricular assist devices (VADs). It also analyses the pros and cons of the existing coatings, particularly in the context of this research. The surface coatings for VADs have evolved from early organic/ inorganic (passive) coatings, to bioactive coatings (e.g. biomolecules), and to cell-based coatings. Based on the commercial applications and the potential of the coatings, the relevant review is focused on the following six types of coatings: (1) titanium nitride (TiN) coatings, (2) diamond-like carbon (DLC) coatings, (3) 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer coatings, (4) heparin coatings, (5) textured surfaces, and (6) endothelial cell lining. Chapter 3 reviews the polymer scaffolds and one relevant fabrication method. In tissue engineering, the function of a polymeric material is to provide a 3-dimensional architecture (scaffold) which is typically used to accommodate transplanted cells and to guide their growth and the regeneration of tissue. The success of these systems is dependent on the design of the tissue engineering scaffolds. Chapter 4 describes chemical surface treatments for titanium and titanium alloys to increase the bond strength to polymer by altering the substrate surface, for example, by increasing surface roughness or changing surface chemistry. The nature of the surface treatment prior to bonding is found to be a major factor controlling the bonding strength. By increasing surface roughness, an increase in surface area occurs, which allows the adhesive to flow in and around the irregularities on the surface to form a mechanical bond. Changing surface chemistry also results in the formation of a chemical bond. Chapter 5 shows that bond strengths between titanium and polyurethane could be significantly improved by surface treating the titanium prior to bonding. Alkaline heat treatment and H2O2 treatment were applied to change the surface roughness and the surface chemistry of titanium. Surface treatment increases the bond strength by altering the substrate surface in a number of ways, including increasing the surface roughness and changing the surface chemistry. Chapter 6 deals with the characterization of the polyurethane scaffolds, which were fabricated using an enhanced solvent casting/particulate (salt) leaching (SCPL) method developed for preparing three-dimensional porous scaffolds for cardiac tissue engineering. The enhanced method involves the combination of a conventional SCPL method and a step of centrifugation, with the centrifugation being employed to improve the pore uniformity and interconnectivity of the scaffolds. It is shown that the enhanced SCPL method and a collagen coating resulted in a spatially uniform distribution of cells throughout the collagen-coated PU scaffolds.In Chapter 7, the enhanced SCPL method is used to form porous features on the polyurethane-coated titanium substrate. The cavities anchored the endothelial cells to remain on the blood contacting surfaces. It is shown that the surface porosities created by the enhanced SCPL may be useful in forming a stable endothelial layer upon the blood contacting surface. Chapter 8 finally summarises the entire work performed on the fabrication and analysis of the polymer-Ti bonding, the enhanced SCPL method and the PU microporous surface on the metallic substrate. It then outlines the possibilities for future work and research in this area.
Resumo:
Efficient management of domestic wastewater is a primary requirement for human well being. Failure to adequately address issues of wastewater collection, treatment and disposal can lead to adverse public health and environmental impacts. The increasing spread of urbanisation has led to the conversion of previously rural land into urban developments and the more intensive development of semi urban areas. However the provision of reticulated sewerage facilities has not kept pace with this expansion in urbanisation. This has resulted in a growing dependency on onsite sewage treatment. Though considered only as a temporary measure in the past, these systems are now considered as the most cost effective option and have become a permanent feature in some urban areas. This report is the first of a series of reports to be produced and is the outcome of a research project initiated by the Brisbane City Council. The primary objective of the research undertaken was to relate the treatment performance of onsite sewage treatment systems with soil conditions at site, with the emphasis being on septic tanks. This report consists of a ‘state of the art’ review of research undertaken in the arena of onsite sewage treatment. The evaluation of research brings together significant work undertaken locally and overseas. It focuses mainly on septic tanks in keeping with the primary objectives of the project. This report has acted as the springboard for the later field investigations and analysis undertaken as part of the project. Septic tanks still continue to be used widely due to their simplicity and low cost. Generally the treatment performance of septic tanks can be highly variable due to numerous factors, but a properly designed, operated and maintained septic tank can produce effluent of satisfactory quality. The reduction of hydraulic surges from washing machines and dishwashers, regular removal of accumulated septage and the elimination of harmful chemicals are some of the practices that can improve system performance considerably. The relative advantages of multi chamber over single chamber septic tanks is an issue that needs to be resolved in view of the conflicting research outcomes. In recent years, aerobic wastewater treatment systems (AWTS) have been gaining in popularity. This can be mainly attributed to the desire to avoid subsurface effluent disposal, which is the main cause of septic tank failure. The use of aerobic processes for treatment of wastewater and the disinfection of effluent prior to disposal is capable of producing effluent of a quality suitable for surface disposal. However the field performance of these has been disappointing. A significant number of these systems do not perform to stipulated standards and quality can be highly variable. This is primarily due to houseowner neglect or ignorance of correct operational and maintenance procedures. The other problems include greater susceptibility to shock loadings and sludge bulking. As identified in literature a number of design features can also contribute to this wide variation in quality. The other treatment processes in common use are the various types of filter systems. These include intermittent and recirculating sand filters. These systems too have their inherent advantages and disadvantages. Furthermore as in the case of aerobic systems, their performance is very much dependent on individual houseowner operation and maintenance practices. In recent years the use of biofilters has attracted research interest and particularly the use of peat. High removal rates of various wastewater pollutants have been reported in research literature. Despite these satisfactory results, leachate from peat has been reported in various studies. This is an issue that needs further investigations and as such biofilters can still be considered to be in the experimental stage. The use of other filter media such as absorbent plastic and bark has also been reported in literature. The safe and hygienic disposal of treated effluent is a matter of concern in the case of onsite sewage treatment. Subsurface disposal is the most common and the only option in the case of septic tank treatment. Soil is an excellent treatment medium if suitable conditions are present. The processes of sorption, filtration and oxidation can remove the various wastewater pollutants. The subsurface characteristics of the disposal area are among the most important parameters governing process performance. Therefore it is important that the soil and topographic conditions are taken into consideration in the design of the soil absorption system. Seepage trenches and beds are the common systems in use. Seepage pits or chambers can be used where subsurface conditions warrant, whilst above grade mounds have been recommended for a variety of difficult site conditions. All these systems have their inherent advantages and disadvantages and the preferable soil absorption system should be selected based on site characteristics. The use of gravel as in-fill for beds and trenches is open to question. It does not contribute to effluent treatment and has been shown to reduce the effective infiltrative surface area. This is due to physical obstruction and the migration of fines entrained in the gravel, into the soil matrix. The surface application of effluent is coming into increasing use with the advent of aerobic treatment systems. This has the advantage that treatment is undertaken on the upper soil horizons, which is chemically and biologically the most effective in effluent renovation. Numerous research studies have demonstrated the feasibility of this practice. However the overriding criteria is the quality of the effluent. It has to be of exceptionally good quality in order to ensure that there are no resulting public health impacts due to aerosol drift. This essentially is the main issue of concern, due to the unreliability of the effluent quality from aerobic systems. Secondly, it has also been found that most householders do not take adequate care in the operation of spray irrigation systems or in the maintenance of the irrigation area. Under these circumstances surface disposal of effluent should be approached with caution and would require appropriate householder education and stringent compliance requirements. However despite all this, the efficiency with which the process is undertaken will ultimately rest with the individual householder and this is where most concern rests. Greywater too should require similar considerations. Surface irrigation of greywater is currently being permitted in a number of local authority jurisdictions in Queensland. Considering the fact that greywater constitutes the largest fraction of the total wastewater generated in a household, it could be considered to be a potential resource. Unfortunately in most circumstances the only pretreatment that is required to be undertaken prior to reuse is the removal of oil and grease. This is an issue of concern as greywater can considered to be a weak to medium sewage as it contains primary pollutants such as BOD material and nutrients and may also include microbial contamination. Therefore its use for surface irrigation can pose a potential health risk. This is further compounded by the fact that most householders are unaware of the potential adverse impacts of indiscriminate greywater reuse. As in the case of blackwater effluent reuse, there have been suggestions that greywater should also be subjected to stringent guidelines. Under these circumstances the surface application of any wastewater requires careful consideration. The other option available for the disposal effluent is the use of evaporation systems. The use of evapotranspiration systems has been covered in this report. Research has shown that these systems are susceptible to a number of factors and in particular to climatic conditions. As such their applicability is location specific. Also the design of systems based solely on evapotranspiration is questionable. In order to ensure more reliability, the systems should be designed to include soil absorption. The successful use of these systems for intermittent usage has been noted in literature. Taking into consideration the issues discussed above, subsurface disposal of effluent is the safest under most conditions. This is provided the facility has been designed to accommodate site conditions. The main problem associated with subsurface disposal is the formation of a clogging mat on the infiltrative surfaces. Due to the formation of the clogging mat, the capacity of the soil to handle effluent is no longer governed by the soil’s hydraulic conductivity as measured by the percolation test, but rather by the infiltration rate through the clogged zone. The characteristics of the clogging mat have been shown to be influenced by various soil and effluent characteristics. Secondly, the mechanisms of clogging mat formation have been found to be influenced by various physical, chemical and biological processes. Biological clogging is the most common process taking place and occurs due to bacterial growth or its by-products reducing the soil pore diameters. Biological clogging is generally associated with anaerobic conditions. The formation of the clogging mat provides significant benefits. It acts as an efficient filter for the removal of microorganisms. Also as the clogging mat increases the hydraulic impedance to flow, unsaturated flow conditions will occur below the mat. This permits greater contact between effluent and soil particles thereby enhancing the purification process. This is particularly important in the case of highly permeable soils. However the adverse impacts of the clogging mat formation cannot be ignored as they can lead to significant reduction in the infiltration rate. This in fact is the most common cause of soil absorption systems failure. As the formation of the clogging mat is inevitable, it is important to ensure that it does not impede effluent infiltration beyond tolerable limits. Various strategies have been investigated to either control clogging mat formation or to remediate its severity. Intermittent dosing of effluent is one such strategy that has attracted considerable attention. Research conclusions with regard to short duration time intervals are contradictory. It has been claimed that the intermittent rest periods would result in the aerobic decomposition of the clogging mat leading to a subsequent increase in the infiltration rate. Contrary to this, it has also been claimed that short duration rest periods are insufficient to completely decompose the clogging mat, and the intermediate by-products that form as a result of aerobic processes would in fact lead to even more severe clogging. It has been further recommended that the rest periods should be much longer and should be in the range of about six months. This entails the provision of a second and alternating seepage bed. The other concepts that have been investigated are the design of the bed to meet the equilibrium infiltration rate that would eventuate after clogging mat formation; improved geometry such as the use of seepage trenches instead of beds; serial instead of parallel effluent distribution and low pressure dosing of effluent. The use of physical measures such as oxidation with hydrogen peroxide and replacement of the infiltration surface have been shown to be only of short-term benefit. Another issue of importance is the degree of pretreatment that should be provided to the effluent prior to subsurface application and the influence exerted by pollutant loadings on the clogging mat formation. Laboratory studies have shown that the total mass loadings of BOD and suspended solids are important factors in the formation of the clogging mat. It has also been found that the nature of the suspended solids is also an important factor. The finer particles from extended aeration systems when compared to those from septic tanks will penetrate deeper into the soil and hence will ultimately cause a more dense clogging mat. However the importance of improved pretreatment in clogging mat formation may need to be qualified in view of other research studies. It has also shown that effluent quality may be a factor in the case of highly permeable soils but this may not be the case with fine structured soils. The ultimate test of onsite sewage treatment system efficiency rests with the final disposal of effluent. The implication of system failure as evidenced from the surface ponding of effluent or the seepage of contaminants into the groundwater can be very serious as it can lead to environmental and public health impacts. Significant microbial contamination of surface and groundwater has been attributed to septic tank effluent. There are a number of documented instances of septic tank related waterborne disease outbreaks affecting large numbers of people. In a recent incident, the local authority was found liable for an outbreak of viral hepatitis A and not the individual septic tank owners as no action had been taken to remedy septic tank failure. This illustrates the responsibility placed on local authorities in terms of ensuring the proper operation of onsite sewage treatment systems. Even a properly functioning soil absorption system is only capable of removing phosphorus and microorganisms. The nitrogen remaining after plant uptake will not be retained in the soil column, but will instead gradually seep into the groundwater as nitrate. Conditions for nitrogen removal by denitrification are not generally present in a soil absorption bed. Dilution by groundwater is the only treatment available for reducing the nitrogen concentration to specified levels. Therefore based on subsurface conditions, this essentially entails a maximum allowable concentration of septic tanks in a given area. Unfortunately nitrogen is not the only wastewater pollutant of concern. Relatively long survival times and travel distances have been noted for microorganisms originating from soil absorption systems. This is likely to happen if saturated conditions persist under the soil absorption bed or due to surface runoff of effluent as a result of system failure. Soils have a finite capacity for the removal of phosphorus. Once this capacity is exceeded, phosphorus too will seep into the groundwater. The relatively high mobility of phosphorus in sandy soils have been noted in the literature. These issues have serious implications in the design and siting of soil absorption systems. It is not only important to ensure that the system design is based on subsurface conditions but also the density of these systems in given areas is a critical issue. This essentially involves the adoption of a land capability approach to determine the limitations of an individual site for onsite sewage disposal. The most limiting factor at a particular site would determine the overall capability classification for that site which would also dictate the type of effluent disposal method to be adopted.
Resumo:
The study of the electrodeposition of polycrystalline gold in aqueous solution is important from the viewpoint that in electrocatalysis applications ill-defined micro- and nanostructured surfaces are often employed. In this work, the morphology of gold was controlled by the electrodeposition potential and the introduction of Pb(CH3COO)2•3H2O into the plating solution to give either smooth or nanostructured gold crystallites or large dendritic structures which have been characterized by scanning electron microscopy (SEM). The latter structures were achieved through a novel in situ galvanic replacement of lead with AuCl4−(aq) during the course of gold electrodeposition. The electrochemical behavior of electrodeposited gold in the double layer region was studied in acidic and alkaline media and related to electrocatalytic performance for the oxidation of hydrogen peroxide and methanol. It was found that electrodeposited gold is a significantly better electrocatalyst than a polished gold electrode; however, performance is highly dependent on the chosen deposition parameters. The fabrication of a deposit with highly active surface states, comparable to those achieved at severely disrupted metal surfaces through thermal and electrochemical methods, does not result in the most effective electrocatalyst. This is due to significant premonolayer oxidation that occurs in the double layer region of the electrodeposited gold. In particular, in alkaline solution, where gold usually shows the most electrocatalytic activity, these active surface states may be overoxidized and inhibit the electrocatalytic reaction. However, the activity and morphology of an electrodeposited film can be tailored whereby electrodeposited gold that exhibits nanostructure within the crystallites on the surface demonstrated enhanced electrocatalytic activity compared to smaller smooth gold crystallites and larger dendritic structures in potential regions well within the double layer region.
Resumo:
The electrochemical and electrocatalytic behaviour of silver nanoprisms, nanospheres and nanocubes of comparable size in an alkaline medium have been investigated to ascertain the shape dependent behaviour of silver nanoparticles, which are an extensively studied nanomaterial. The nanomaterials were synthesised using chemical methods and characterised with UV-visible spectroscopy, transmission electron microscopy and X-ray diffraction. The nanomaterials were immobilised on a substrate glassy carbon electrode and characterised by cyclic voltammetry for their surface oxide electrochemistry. The electrocatalytic oxidation of hydrazine and formaldehyde and the reduction of hydrogen peroxide were studied by performing cyclic voltammetric and chronoamperometric experiments for both the nanomaterials and a smooth polycrystalline macrosized silver electrode. In all cases the nanomaterials showed enhanced electrocatalytic activity over the macro-silver electrode. Significantly, the silver nanoprisms that are rich in hcp lamellar defects showed greater activity than nanospheres and nanocubes for all reactions studied.
Resumo:
BACKGROUND: The molecular pathogenesis of different sensitivities of the renal proximal and distal tubular cell populations to ischemic injury, including ischemia-reperfusion (IR)-induced oxidative stress, is not well-defined. An in vitro model of oxidative stress was used to compare the survival of distal [Madin-Darby canine kidney (MDCK)] and proximal [human kidney-2 (HK-2)] renal tubular epithelial cells, and to analyze for links between induced cell death and expression and localization of selected members of the Bcl-2 gene family (anti-apoptotic Bcl-2 and Bcl-X(L), pro-apoptotic Bax and Bad). METHODS: Cells were treated with 1 mmol/L hydrogen peroxide (H2O2) or were grown in control medium for 24 hours. Cell death (apoptosis) was quantitated using defined morphological criteria. DNA gel electrophoresis was used for biochemical identification. Protein expression levels and cellular localization of the selected Bcl-2 family proteins were analyzed (Western immunoblots, densitometry, immunoelectron microscopy). RESULTS: Apoptosis was minimal in control cultures and was greatest in treated proximal cell cultures (16.93 +/- 4.18% apoptosis) compared with treated distal cell cultures (2.28 +/- 0.85% apoptosis, P < 0.001). Endogenous expression of Bcl-X(L) and Bax, but not Bcl-2 or Bad, was identified in control distal cells. Bcl-X(L) and Bax had nonsignificant increases (P> 0.05) in these cells. Bcl-2, Bax, and Bcl-X(L), but not Bad, were endogenously expressed in control proximal cells. Bcl-X(L) was significantly decreased in treated proximal cultures (P < 0.05), with Bax and Bcl-2 having nonsignificant increases (P> 0.05). Immunoelectron microscopy localization indicated that control and treated but surviving proximal cells had similar cytosolic and membrane localization of the Bcl-2 proteins. In comparison, surviving cells in the treated distal cultures showed translocation of Bcl-X(L) from cytosol to the mitochondria after treatment with H2O2, a result that was confirmed using cell fractionation and analysis of Bcl-X(L) expression levels of the membrane and cytosol proteins. Bax remained distributed evenly throughout the surviving distal cells, without particular attachment to any cellular organelle. CONCLUSION: The results indicate that in this in vitro model, the increased survival of distal compared with proximal tubular cells after oxidative stress is best explained by the decreased expression of anti-apoptotic Bcl-X(L) in proximal cells, as well as translocation of Bcl-X(L) protein to mitochondria within the surviving distal cells.
Resumo:
Fibrogenic stresses promote progression of renal tubulointerstitial fibrosis, disparately affecting survival, proliferation and trans-differentiation of intrinsic renal cell populations through ill-defined biomolecular pathways. We investigated the effect of fibrogenic stresses on the activation of cell-specific mitogen-activated protein kinase (MAPK) in renal fibroblast, epithelial and endothelial cell populations. The relative outcomes (cell death, proliferation, trans-differentiation) associated with activation or inhibition of extracellular-regulated protein kinase (ERK) or stress activated/c-Jun N terminal kinase (JNK) were analysed in each renal cell population after challenge with oxidative stress (1 mmol/L H2O2), transforming growth factor-beta1 (TGF-beta1, 10 ng/mL) or tumour necrosis factor-alpha (TNF-alpha, 50 ng/mL) over 0-20 h. Apoptosis increased significantly in all cell types after oxidative stress (P < 0.05). In fibroblasts, oxidative stress caused the activation of ERK (pERK) but not JNK (pJNK). Inhibition of ERK by PD98059 supported its role in a fibroblast death pathway. In epithelial and endothelial cells, oxidative stress-induced apoptosis was preceded by early induction of pERK, but its inhibition did not support a pro-apoptotic role. Early ERK activity may be conducive to their survival or promote the trans-differentiation of epithelial cells. In epithelial and endothelial cells, oxidative stress induced pJNK acutely. Pretreatment with SP600125 (JNK inhibitor) verified its pro-apoptotic activity only in epithelial cells. Transforming growth factor-beta1 did not significantly alter mitosis or apoptosis in any of the cell types, nor did it alter MAPK activity. Tumor necrosis factor-alpha caused increased apoptosis with no associated change in MAPK activity. Our results demonstrate renal cell-specific differences in the activation of ERK and JNK following fibrotic insult, which may be useful for targeting excessive fibroblast proliferation in chronic fibrosis.
Resumo:
Objectives To characterize and discover the determinants of the frequency of wear (FOW) of contact lenses. Methods Survey forms were sent to contact lens fitters in up to 40 countries between January and March every year for 5 consecutive years (2007–2011). Practitioners were asked to record data relating to the first 10 contact lens fits or refits performed after receiving the survey form. Only data for daily wear lens fits were analyzed. Results Data were collected in relation to 74,510 and 9,014 soft and rigid lens fits, respectively. Overall, FOW was 5.9±1.7 days per week (DPW). When considering the proportion of lenses worn between one to seven DPW, the distribution for rigid lenses is skewed toward full-time wear (7 DPW), whereas the distribution for soft daily disposable lenses is perhaps bimodal, with large and small peaks at seven and two DPW, respectively. There is a significant variation in FOW among nations (P<0.0001), ranging from 6.8±1.0 DPW in Greece to 5.1±2.5 DPW in Kuwait. For soft lenses, FOW increases with decreasing age. Females (6.0±1.6 DPW) wear lenses more frequently than males (5.8±1.7 DPW) (P=0.0002). FOW is greater among those wearing presbyopic corrections (6.1±1.4 DPW) compared with spherical (5.9±1.7 DPW) and toric (5.9±1.6 DPW) designs (P<0.0001). FOW with hydrogel peroxide systems (6.4±1.1 DPW) was greater than that with multipurpose systems (6.2±1.3 DPW) (P<0.0001). Conclusions Numerous demographic and contact lens–related factors impact FOW. There may be a future trend toward a lower FOW associated with the increasing popularity of daily disposable lenses.
Resumo:
Numerous crops grow in sugar regions that have the potential to increase the amount of biomass available to a small bagasse-based pulp factory. Arundo donax and Sorghum offer unique advantages to farmers compared to other agricultural crops. Sorghum bicolour requires only 1/3 of the water of sugarcane. Arundo donax is a very high yield crop, it can also grow with little water but it has the further advantage in that it is also highly stress tolerant, making it suitable for land which is unsuited to other crops. Pulps produced from these crops were benchmarked against sugarcane bagasse pulp. Arundo, sorghum and bagasse were pulped using KOH and anthraquinone to 20 Kappa number so as to produce a bleachable pulp which is suitable for making photocopier paper and tissue products. The unbleached sorghum pulp has better tensile strength properties than the unbleached Arundo pulp (43.8 Nm/g compared to 21.4 Nm/g) and the bleached sorghum pulp tensile strength was similar to bagasse (28.4 Nm/g). At 20 Kappa number, sorghum pulp had acceptable yield for a non-wood fibre (45% c.f. 55% for bagasse), Arundo donax pulp had low tensile strength, and relatively low yield (38.7%), even for an agricultural fibre and required severe cooking conditions to achieve similar delignification to sugarcane bagasse or sorghum. Sorghum and Arundo donax produced thicker handsheets than bagasse (>160 µm c.f. 122 µm for bagasse). In preliminary experiments sorghum and bagasse responded slightly better to Totally Chlorine Free peroxide bleaching (QPP), although none achieved a satisfactory brightness level and further improvement would be required to produce a bleached pulp.
Resumo:
The fact that nature provides specific enzymes to selectively remove superoxide (O2.−) from aerobic organisms, namely, the superoxide dismutase enzymes,1 has led to the suggestion that this radical ion may cause the oxidative damage associated with degradative disease and aging.2 Intriguingly, however, superoxide itself is relatively unreactive toward most cellular components, which suggests that dismutase enzymes may ultimately protect the cell against more pernicious oxidants formed from superoxide. As such, there is increasing interest in the endogenous chemistry of superoxide and the pathways by which it might beget more reactive oxygen species. Protonation of superoxide to form the hydroperoxyl radical (HOO.) and dismutation of the same species to hydrogen peroxide (HOOH), with subsequent metal-catalyzed reduction to the hydroxyl radical (HO.), are well-characterized processes in which both the HOO. and HO. radicals are significantly more reactive than their common progenitor.2 Recent examples, however, have also linked superoxide to the putative production of singlet oxygen3 and ozone,4, 5 although the definitive characterization of these chemistries in the cellular milieu has proved challenging
Resumo:
Novel nano zero-valent iron/palygorskite composite materials prepared by evaporative and centrifuge methods are tested for the degradation of bisphenol A in an aqueous medium. A systematic study is presented which showed that nano zero-valent iron material has little effect on bisphenol A degradation. When hydrogen peroxide was added to initiate the reaction, some percentage of bisphenol A removal (∼20%) was achieved; however, with the aid of air bubbles, the percentage removal can be significantly increased to ∼99%. Compared with pristine nano zero-valent iron and commercial iron powder, nano zero-valent iron/palygorskite composite materials have much higher reactivity towards bisphenol A and these materials are superior as they have little impact on the solution pH. However, for pristine nano zero-valent iron, it is difficult to maintain the reaction system at a favourable low pH which is a key factor in maintaining high bisphenol A removal. All materials were characterized by X-ray diffraction, scanning electron microscopy, elemental analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. The optimum conditions were obtained based on a series of batch experiments. This study has extended the application of nano zero-valent iron/palygorskite composites as effective materials for the removal of phenolic compounds from the environment.