865 resultados para Diamond, Jared: Collapse. How Societies Choose to Fail or Succeed
Resumo:
Data from an Australian national survey (1996 to 1997) are used to examine domestic labor patterns among de facto and married men and women. The results show that women spend more time on housework and do a greater proportion of housework than men. However, the patterns are most traditional among married men and women. Women in de facto relationships spend less time doing housework and do a smaller proportion of indoor activities than married women. Men in de facto relationships do a larger proportion of indoor activities and a lower proportion of outdoor tasks than married men. The data also show that couples who have cohabited prior to marriage have more egalitarian divisions of labor than those who have not cohabited prior to marriage. This article concludes by arguing that the incompleteness of the de facto relationship provides a period of relative freedom in which to negotiate more equal roles.
Resumo:
Despite the typically low population densities and animal-mediated pollination of tropical forest trees, outcrossing and long-distance pollen dispersal are the norm. We reviewed the genetic literature on mating systems and pollen dispersal for neotropical trees to identify the ecological and phylogenetic correlates. The 36 studies surveyed found >90% outcrossed mating for 45 hermaphroditic or monoecious species. Self-fertilization rates varied inversely with population density and showed phylogenetic and geographic trends. The few direct measures of pollen flow (N = 11 studies) suggest that pollen dispersal is widespread among low-density tropical trees, ranging from a mean of 200 m to over 19 km for species pollinated by small insects or bats. Future research needs to examine (1) the effect of inbreeding depression on observed outcrossing rates, (2) pollen dispersal in a wide range of pollination syndromes and ecological classes, (3) and the range of variation of mating system expression at different hierarchical levels, including individual, seasonal, population, ecological, landscape and range wide.
Resumo:
The advent of novel biological therapies for the treatment of rheumatic disease has renewed interest in the seronegative spondyloarthropathies (SpAs). International efforts are redefining disease classification and measures of disease activity, outcome, metrology, and imaging. However, opinion is divided between those who propose that the SpA group represents the same disease with variable expression (the lumpers) and those who consider these to be separate diseases with shared clinical features (the splitters). This review presents the evidence for both approaches.
Resumo:
In cell lifespan studies the exponential nature of cell survival curves is often interpreted as showing the rate of death is independent of the age of the cells within the population. Here we present an alternative model where cells that die are replaced and the age and lifespan of the population pool is monitored until a, steady state is reached. In our model newly generated individual cells are given a determined lifespan drawn from a number of known distributions including the lognormal, which is frequently found in nature. For lognormal lifespans the analytic steady-state survival curve obtained can be well-fit by a single or double exponential, depending on the mean and standard deviation. Thus, experimental evidence for exponential lifespans of one and/or two populations cannot be taken as definitive evidence for time and age independence of cell survival. A related model for a dividing population in steady state is also developed. We propose that the common adoption of age-independent, constant rates of change in biological modelling may be responsible for significant errors, both of interpretation and of mathematical deduction. We suggest that additional mathematical and experimental methods must be used to resolve the relationship between time and behavioural changes by cells that are predominantly unsynchronized.
Resumo:
Relocation is one organizational phenomenon where the influence of family is prominent. Our paper thus uses it as a backdrop against which to study the work–family interface. In-depth qualitative analysis of 62 interviews with Royal Air Force personnel is used to complement the literature by demonstrating the impact on and the impact of the immediate family in relocation. The analysis provides evidence that relocation influences an employee's role as family member, other family members and the family as a whole. Findings also illustrate that families influence employees' relocation behaviour, organizational tenure and work focus. In summary, this paper supports the bidirectional nature of the work-family interface and also demonstrates that regardless of whether examining the work-to-family influence or the family-to-work influence the effects are not always negative.
Resumo:
The purpose of the present study is to test the case linkage principles of behavioural consistency and behavioural distinctiveness using serial vehicle theft data. Data from 386 solved vehicle thefts committed by 193 offenders were analysed using Jaccard's, regression and Receiver Operating Characteristic analyses to determine whether objectively observable aspects of crime scene behaviour could be used to distinguish crimes committed by the same offender from those committed by different offenders. The findings indicate that spatial behaviour, specifically the distance between theft locations and between dump locations, is a highly consistent and distinctive aspect of vehicle theft behaviour; thus, intercrime and interdump distance represent the most useful aspects of vehicle theft for the purpose of case linkage analysis. The findings have theoretical and practical implications for understanding of criminal behaviour and for the development of decision-support tools to assist police investigation and apprehension of serial vehicle theft offenders.
Resumo:
The Implementation of Enterprise Resource Planning (ERP) systems require huge investments while ineffective implementations of such projects are commonly observed. A considerable number of these projects have been reported to fail or take longer than it was initially planned, while previous studies show that the aim of rapid implementation of such projects has not been successful and the failure of the fundamental goals in these projects have imposed huge amounts of costs on investors. Some of the major consequences are the reduction in demand for such products and the introduction of further skepticism to the managers and investors of ERP systems. In this regard, it is important to understand the factors determining success or failure of ERP implementation. The aim of this paper is to study the critical success factors (CSFs) in implementing ERP systems and to develop a conceptual model which can serve as a basis for ERP project managers. These critical success factors that are called “core critical success factors” are extracted from 62 published papers using the content analysis and the entropy method. The proposed conceptual model has been verified in the context of five multinational companies.
Resumo:
Bayesian algorithms pose a limit to the performance learning algorithms can achieve. Natural selection should guide the evolution of information processing systems towards those limits. What can we learn from this evolution and what properties do the intermediate stages have? While this question is too general to permit any answer, progress can be made by restricting the class of information processing systems under study. We present analytical and numerical results for the evolution of on-line algorithms for learning from examples for neural network classifiers, which might include or not a hidden layer. The analytical results are obtained by solving a variational problem to determine the learning algorithm that leads to maximum generalization ability. Simulations using evolutionary programming, for programs that implement learning algorithms, confirm and expand the results. The principal result is not just that the evolution is towards a Bayesian limit. Indeed it is essentially reached. In addition we find that evolution is driven by the discovery of useful structures or combinations of variables and operators. In different runs the temporal order of the discovery of such combinations is unique. The main result is that combinations that signal the surprise brought by an example arise always before combinations that serve to gauge the performance of the learning algorithm. This latter structures can be used to implement annealing schedules. The temporal ordering can be understood analytically as well by doing the functional optimization in restricted functional spaces. We also show that there is data suggesting that the appearance of these traits also follows the same temporal ordering in biological systems. © 2006 American Institute of Physics.