866 resultados para Diabète de type 1
Resumo:
The involvement of type 1 fimbriae in colonisation of the rat gastrointestinal tract in vivo was investigated with Salmonella enterica serotype Enteritidis LA5 and a mutant of LA5 denoted EAV3 unable to elaborate type 1 fimbriae (SEF 21), Rats were given a single dose of LA5 or EAV3 or a 1:1 mixture of both, LA5 was found in higher numbers in the stomach and small intestine than EAV3 at 6 h after infection with a single strain, but not after 6 days, LA5 did not out-compete EAV3 when the strains were administered together. Indeed, after 6 and 21 days, EAV3 was found in the distal small intestine and large intestine in far higher numbers than LA5. These findings suggest that SEF 21 have an important role(s) in the early stages of infection in vivo, However, SEF 21 expression may disadvantage the pathogen in the longer term as indicated by EAV3 out-competing LA5 in the gut at 21 days.
Resumo:
Biofilm formation on abiotic surfaces may provide a source of microbial contamination and may also enhance microbial environmental survival. The role of fimbrial expression by Shiga toxin-producing Escherichia coli (STEC) in biofilm formation is poorly understood. This study aimed to investigate the role of STEC type 1 and curli fimbriae in adhesion to and biofilm formation on abiotic surfaces. None of 13 O157:H7 isolates expressed either fimbrial type whereas 11 of 13 and 5 of 13 non-O157 STEC elaborated type 1 fimbriae and curli fimbriae, respectively. Mutants made by allelic exchange of a diarrhoeal non-O157 STEC isolate, O128:H2 (E41509), unable to elaborate type 1 and curli fimbriae were made for adherence and biofilm assays. Elaboration of type 1 fimbriae was necessary for the adhesion to abiotic surfaces whereas curliation was associated with both adherence and subsequent biofilm formation. STEC O157:H7 adhered to thermanox and glass but poorly to polystyrene. Additionally, STEC O157:H7 failed to form biofilms. These data indicate that certain STEC isolates are able to form biofilms and that the elaboration of curli fimbriae may enhance biofilm formation leading to possible long-term survival and a potential source of human infection.
Resumo:
In order to examine metacognitive accuracy (i.e., the relationship between metacognitive judgment and memory performance), researchers often rely on by-participant analysis, where metacognitive accuracy (e.g., resolution, as measured by the gamma coefficient or signal detection measures) is computed for each participant and the computed values are entered into group-level statistical tests such as the t-test. In the current work, we argue that the by-participant analysis, regardless of the accuracy measurements used, would produce a substantial inflation of Type-1 error rates, when a random item effect is present. A mixed-effects model is proposed as a way to effectively address the issue, and our simulation studies examining Type-1 error rates indeed showed superior performance of mixed-effects model analysis as compared to the conventional by-participant analysis. We also present real data applications to illustrate further strengths of mixed-effects model analysis. Our findings imply that caution is needed when using the by-participant analysis, and recommend the mixed-effects model analysis.
Resumo:
In recent years an increasing number of papers have employed meta-analysis to integrate effect sizes of researchers’ own series of studies within a single paper (“internal meta-analysis”). Although this approach has the obvious advantage of obtaining narrower confidence intervals, we show that it could inadvertently inflate false-positive rates if researchers are motivated to use internal meta-analysis in order to obtain a significant overall effect. Specifically, if one decides whether to stop or continue a further replication experiment depending on the significance of the results in an internal meta-analysis, false-positive rates would increase beyond the nominal level. We conducted a set of Monte-Carlo simulations to demonstrate our argument, and provided a literature review to gauge awareness and prevalence of this issue. Furthermore, we made several recommendations when using internal meta-analysis to make a judgment on statistical significance.
Resumo:
Several studies have implicated the renin angiotensin system in the cardiac hypertrophy induced by thyroid hormone. However, whether Angiotensin type 1 receptor (AT(1)R) is critically required to the development of T(3)-induced cardiomyocyte hypertrophy as well as whether the intracellular mechanisms that are triggered by AT(1)R are able to contribute to this hypertrophy model is unknown. To address these questions, we employed a selective small interfering RNA (siRNA, 50 nM) or an AT(1)R blocker (Losartan, 1 mu M) to evaluate the specific role of this receptor in primary cultures of neonatal cardiomyocytes submitted to T(3) (10 nM) treatment. The cardiomyocytes transfected with the AT(1)R siRNA presented reduced mRNA (90%, P < 0.001) and protein (70%, P < 0.001) expression of AT(1)R. The AT(1)R silencing and the AT(1)R blockade totally prevented the T(3)-induced cardiomyocyte hypertrophy, as evidenced by lower mRNA expression of atrial natriuretic factor (66%, P < 0.01) and skeletal alpha-actin (170%, P < 0.01) as well as by reduction in protein synthesis (85%, P < 0.001). The cardiomyocytes treated with T(3) demonstrated a rapid activation of Akt/GSK-3 beta/mTOR signaling pathway, which was completely inhibited by the use of PI3K inhibitors (LY294002, 10 mu M and Wortmannin, 200 nM). In addition, we demonstrated that the AT(1)R mediated the T(3)-induced activation of Akt/GSK-3 beta/mTOR signaling pathway, since the AT(1)R silencing and the AT(1)R blockade attenuated or totally prevented the activation of this signaling pathway. We also reported that local Angiotensin I/II (Ang I/II) levels (120%, P < 0.05) and the AT(1)R expression (180%, P < 0.05) were rapidly increased by T(3) treatment. These data demonstrate for the first time that the AT(1)R is a critical mediator to the T(3)-induced cardiomyocyte hypertrophy as well as to the activation of Akt/GSK-3 beta/mTOR signaling pathway. These results represent a new insight into the mechanism of T(3)-induced cardiomyocyte hypertrophy, indicating that the Ang I/II-AT(1)R-Akt/GSK-3 beta/mTOR pathway corresponds to a potential mediator of the trophic effect exerted by T(3) in cardiomyocytes.
Resumo:
Background. Microencapsulation of pancreatic islets with polymeric compounds constitutes an attractive alternative therapy for type 1 diabetes mellitus. The major limiting factor is the availability of a biocompatible and mechanically stable polymer. We investigated the potential of Biodritin, a novel polymer constituted of alginate and chondroitin sulfate, for islet microencapsulation. Methods. Biodritin microcapsules were obtained using an air jet droplet generator and gelated with barium or calcium chloride. Microencapsulated rat insulinoma RINm5F cells were tested for viability using the [3-(4,5-dimetyl-thiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide] [MTT] colorimetric assay. Microencapsulated rat pancreatic islets were coincubated with macrophages derived from mouse peritoneal liquid to assess the immunomodulatory potential of the microcapsules, using quantitative real time-PCR (qPCR). Biodritin biocompatibility was demonstrated by subcutaneous injection of empty microcapsules into immunocompetent Wistar rats. Insulin secretion by microencapsulated human pancreatic islets was evaluated using an electrochemoluminescent assay. Microencapsulated human islets transplanted into chemically induced diabetic mice were monitored for reversal of hyperglycemia. Results. The metabolic activity of microencapsulated RINm5F cells persisted for at least 15 days. Interleukin-1 beta expression by macrophages was observed during coculture with islets microencapsulated with Biodritin-CaCl2, but not with Biodritin-BaCl2. No statistical difference in glucose-stimulated insulin secretion was observed between nonencapsulated and microencapsulated islets. Upon microencapsulated islet transplantation, the blood glucose level of diabetic mice normalized; they remained euglycemic for at least 60 days, displaying normal oral glucose tolerance tests. Conclusion. This study demonstrated that Biodritin can be used for islet microencapsulation and reversal of diabetes; however, further investigations are required to assess its potential for long-term transplantation.
Resumo:
Print No. 68; corner is ripped; Initials Lower Left: OL; Initials Lower Right: ELW (Everett Longley Warner)
Resumo:
Print No 97; Initials Lower Left: WH; Initials Lower Left: VI; Initials Lower Left: RN
Resumo:
Print No 68 ; Initials Lower Left: OL; Initials Lower Left: YG; Initials Lower Left: DT; Initials Lower Right: ELW (Everett Longley Warner)
Resumo:
Print No. 76; handwritten pencil notes "Dist #4" "14" on back.; Initials Lower Left: WH; Initials Lower Left: VI; Initials Lower Left: RN
Resumo:
Print No. 69
Resumo:
Print No. 11
Resumo:
Print No. 66
Resumo:
Print No.72
Resumo:
Print No. 71