989 resultados para Developing Cerebral-cortex
Resumo:
This study was undertaken to determine how dopamine influences cortical development. It focused on morphogenesis of GABAergic neurons that contained the calcium-binding protein parvalbumin (PV). Organotypic slices of frontoparietal cortex were taken from neonatal rats, cultured with or without dopamine, harvested daily (4-30 d), and immunostained for parvalbumin. Expression of parvalbumin occurred in the same regional and laminar sequence as in vivo. Expression in cingulate and entorhinal preceded that in lateral frontoparietal cortices. Laminar expression progressed from layer V to VI and finally II-IV. Somal labeling preceded fiber labeling by 2 d. Dopamine accelerated PV expression. In treated slices, a dense band of PV-immunoreactive neurons appeared in layer V at 7 d in vitro (DIV), and in all layers of frontoparietal cortex at 14 DIV, whereas in control slices such labeling did not appear until 14 and 21 DIV, respectively. The laminar distribution and dendritic branching of PV-immunoreactive neurons were quantified. More labeled neurons were in the superficial layers, and their dendritic arborizations were significantly increased by dopamine. Treatment with a D1 receptor agonist had little effect, whereas a D2 agonist mimicked dopamine's effects. Likewise, the D2 but not the D1 antagonist blocked dopamine-induced changes, indicating that they were mediated primarily by D2 receptors. Parvalbumin expression was accelerated by dopaminergic reinnervation of cortical slices that were cocultured with mesencephalic slices. Coapplication of the glutamate NMDA receptor antagonist MK801 or AP5 blocked dopamine-induced increases in dendritic branching, suggesting that changes were mediated partly by interaction with glutamate to alter cortical excitability.
Resumo:
Résumé: Le développement rapide de nouvelles technologies comme l'imagerie médicale a permis l'expansion des études sur les fonctions cérébrales. Le rôle principal des études fonctionnelles cérébrales est de comparer l'activation neuronale entre différents individus. Dans ce contexte, la variabilité anatomique de la taille et de la forme du cerveau pose un problème majeur. Les méthodes actuelles permettent les comparaisons interindividuelles par la normalisation des cerveaux en utilisant un cerveau standard. Les cerveaux standards les plus utilisés actuellement sont le cerveau de Talairach et le cerveau de l'Institut Neurologique de Montréal (MNI) (SPM99). Les méthodes de recalage qui utilisent le cerveau de Talairach, ou celui de MNI, ne sont pas suffisamment précises pour superposer les parties plus variables d'un cortex cérébral (p.ex., le néocortex ou la zone perisylvienne), ainsi que les régions qui ont une asymétrie très importante entre les deux hémisphères. Le but de ce projet est d'évaluer une nouvelle technique de traitement d'images basée sur le recalage non-rigide et utilisant les repères anatomiques. Tout d'abord, nous devons identifier et extraire les structures anatomiques (les repères anatomiques) dans le cerveau à déformer et celui de référence. La correspondance entre ces deux jeux de repères nous permet de déterminer en 3D la déformation appropriée. Pour les repères anatomiques, nous utilisons six points de contrôle qui sont situés : un sur le gyrus de Heschl, un sur la zone motrice de la main et le dernier sur la fissure sylvienne, bilatéralement. Evaluation de notre programme de recalage est accomplie sur les images d'IRM et d'IRMf de neuf sujets parmi dix-huit qui ont participés dans une étude précédente de Maeder et al. Le résultat sur les images anatomiques, IRM, montre le déplacement des repères anatomiques du cerveau à déformer à la position des repères anatomiques de cerveau de référence. La distance du cerveau à déformer par rapport au cerveau de référence diminue après le recalage. Le recalage des images fonctionnelles, IRMf, ne montre pas de variation significative. Le petit nombre de repères, six points de contrôle, n'est pas suffisant pour produire les modifications des cartes statistiques. Cette thèse ouvre la voie à une nouvelle technique de recalage du cortex cérébral dont la direction principale est le recalage de plusieurs points représentant un sillon cérébral. Abstract : The fast development of new technologies such as digital medical imaging brought to the expansion of brain functional studies. One of the methodolgical key issue in brain functional studies is to compare neuronal activation between individuals. In this context, the great variability of brain size and shape is a major problem. Current methods allow inter-individual comparisions by means of normalisation of subjects' brains in relation to a standard brain. A largerly used standard brains are the proportional grid of Talairach and Tournoux and the Montreal Neurological Insititute standard brain (SPM99). However, there is a lack of more precise methods for the superposition of more variable portions of the cerebral cortex (e.g, neocrotex and perisyvlian zone) and in brain regions highly asymmetric between the two cerebral hemipsheres (e.g. planum termporale). The aim of this thesis is to evaluate a new image processing technique based on non-linear model-based registration. Contrary to the intensity-based, model-based registration uses spatial and not intensitiy information to fit one image to another. We extract identifiable anatomical features (point landmarks) in both deforming and target images and by their correspondence we determine the appropriate deformation in 3D. As landmarks, we use six control points that are situated: one on the Heschl'y Gyrus, one on the motor hand area, and one on the sylvian fissure, bilaterally. The evaluation of this model-based approach is performed on MRI and fMRI images of nine of eighteen subjects participating in the Maeder et al. study. Results on anatomical, i.e. MRI, images, show the mouvement of the deforming brain control points to the location of the reference brain control points. The distance of the deforming brain to the reference brain is smallest after the registration compared to the distance before the registration. Registration of functional images, i.e fMRI, doesn't show a significant variation. The small number of registration landmarks, i.e. six, is obvious not sufficient to produce significant modification on the fMRI statistical maps. This thesis opens the way to a new computation technique for cortex registration in which the main directions will be improvement of the registation algorithm, using not only one point as landmark, but many points, representing one particular sulcus.
Resumo:
Introduction: The coexistence of different molecular types of classical protease-resistant prion protein in the same individual have been described, however, the simultaneous finding of these with the recently described protease-sensitive variant or variably protease-sensitive prionopathy has, to the best of our knowledge, not yet been reported. Case presentation: A 74-year-old Caucasian woman showed a sporadic Creutzfeldt-Jakob disease clinical phenotype with reactive depression, followed by cognitive impairment, akinetic-rigid Parkinsonism with pseudobulbar syndrome and gait impairment with motor apraxia, visuospatial disorientation, and evident frontal dysfunction features such as grasping, palmomental reflex and brisk perioral reflexes. She died at age 77. Neuropathological findings showed: spongiform change in the patient"s cerebral cortex, striatum, thalamus and molecular layer of the cerebellum with proteinase K-sensitive synaptic-like, dot-like or target-like prion protein deposition in the cortex, thalamus and striatum; proteinase K-resistant prion protein in the same regions; and elongated plaque-like proteinase K-resistant prion protein in the molecular layer of the cerebellum. Molecular analysis of prion protein after proteinase K digestion revealed decreased signal intensity in immunoblot, a ladder-like protein pattern, and a 71% reduction of PrPSc signal relative to non-digested material. Her cerebellum showed a 2A prion protein type largely resistant to proteinase K. Genotype of polymorphism at codon 129 was valine homozygous. Conclusion: Molecular typing of prion protein along with clinical and neuropathological data revealed, to the best of our knowledge, the first case of the coexistence of different protease-sensitive prion proteins in the same patient in a rare case that did not fulfill the current clinical diagnostic criteria for either probable or possible sporadic Creutzfeldt-Jakob disease. This highlights the importance of molecular analyses of several brain regions in order to correctly diagnose rare and atypical prionopathies
Resumo:
The Fragile X mental retardation protein (FMRP) regulates neuronal RNA metabolism, and its absence or mutations leads to the Fragile X syndrome (FXS). The β-amyloid precursor protein (APP) is involved in Alzheimer's disease, plays a role in synapse formation, and is upregulated in intellectual disabilities. Here, we show that during mouse synaptogenesis and in human FXS fibroblasts, a dual dysregulation of APP and the α-secretase ADAM10 leads to the production of an excess of soluble APPα (sAPPα). In FXS, sAPPα signals through the metabotropic receptor that, activating the MAP kinase pathway, leads to synaptic and behavioral deficits. Modulation of ADAM10 activity in FXS reduces sAPPα levels, restoring translational control, synaptic morphology, and behavioral plasticity. Thus, proper control of ADAM10-mediated APP processing during a specific developmental postnatal stage is crucial for healthy spine formation and function(s). Downregulation of ADAM10 activity at synapses may be an effective strategy for ameliorating FXS phenotypes.
Resumo:
How a stimulus or a task alters the spontaneous dynamics of the brain remains a fundamental open question in neuroscience. One of the most robust hallmarks of task/stimulus-driven brain dynamics is the decrease of variability with respect to the spontaneous level, an effect seen across multiple experimental conditions and in brain signals observed at different spatiotemporal scales. Recently, it was observed that the trial-to-trial variability and temporal variance of functional magnetic resonance imaging (fMRI) signals decrease in the task-driven activity. Here we examined the dynamics of a large-scale model of the human cortex to provide a mechanistic understanding of these observations. The model allows computing the statistics of synaptic activity in the spontaneous condition and in putative tasks determined by external inputs to a given subset of brain regions. We demonstrated that external inputs decrease the variance, increase the covariances, and decrease the autocovariance of synaptic activity as a consequence of single node and large-scale network dynamics. Altogether, these changes in network statistics imply a reduction of entropy, meaning that the spontaneous synaptic activity outlines a larger multidimensional activity space than does the task-driven activity. We tested this model's prediction on fMRI signals from healthy humans acquired during rest and task conditions and found a significant decrease of entropy in the stimulus-driven activity. Altogether, our study proposes a mechanism for increasing the information capacity of brain networks by enlarging the volume of possible activity configurations at rest and reliably settling into a confined stimulus-driven state to allow better transmission of stimulus-related information.
Resumo:
Extreme prematurity and pregnancy conditions leading to intrauterine growth restriction (IUGR) affect thousands of newborns every year and increase their risk for poor higher order cognitive and social skills at school age. However, little is known about the brain structural basis of these disabilities. To compare the structural integrity of neural circuits between prematurely born controls and children born extreme preterm (EP) or with IUGR at school age, long-ranging and short-ranging connections were noninvasively mapped across cortical hemispheres by connection matrices derived from diffusion tensor tractography. Brain connectivity was modeled along fiber bundles connecting 83 brain regions by a weighted characterization of structural connectivity (SC). EP and IUGR subjects, when compared with controls, had decreased fractional anisotropy-weighted SC (FAw-SC) of cortico-basal ganglia-thalamo-cortical loop connections while cortico-cortical association connections showed both decreased and increased FAw-SC. FAw-SC strength of these connections was associated with poorer socio-cognitive performance in both EP and IUGR children.
Resumo:
STUDY OBJECTIVES: That sleep deprivation increases the brain expression of various clock genes has been well documented. Based on these and other findings we hypothesized that clock genes not only underlie circadian rhythm generation but are also implicated in sleep homeostasis. However, long time lags have been reported between the changes in the clock gene messenger RNA levels and their encoded proteins. It is therefore crucial to establish whether also protein levels increase within the time frame known to activate a homeostatic sleep response. We report on the central and peripheral effects of sleep deprivation on PERIOD-2 (PER2) protein both in intact and suprachiasmatic nuclei-lesioned mice. DESIGN: In vivo and in situ PER2 imaging during baseline, sleep deprivation, and recovery. SETTINGS: Mouse sleep-recording facility. PARTICIPANTS: Per2::Luciferase knock-in mice. INTERVENTIONS: N/A. MEASUREMENTS AND RESULTS: Six-hour sleep deprivation increased PER2 not only in the brain but also in liver and kidney. Remarkably, the effects in the liver outlasted those observed in the brain. Within the brain the increase in PER2 concerned the cerebral cortex mainly, while leaving suprachiasmatic nuclei (SCN) levels unaffected. Against expectation, sleep deprivation did not increase PER2 in the brain of arrhythmic SCN-lesioned mice because of higher PER2 levels in baseline. In contrast, liver PER2 levels did increase in these mice similar to the sham and partially lesioned controls. CONCLUSIONS: Our results stress the importance of considering both sleep-wake dependent and circadian processes when quantifying clock-gene levels. Because sleep deprivation alters PERIOD-2 in the brain as well as in the periphery, it is tempting to speculate that clock genes constitute a common pathway mediating the shared and well-known adverse effects of both chronic sleep loss and disrupted circadian rhythmicity on metabolic health.
Resumo:
Rationale Methylone, a new drug of abuse sold as"bath salts' has similar effects to ecstasy or cocaine. Objective We have investigated changes in dopaminergic and serotoninergic markers, indicative of neuronal damage, induced by methylone in the frontal cortex, hippocampus and striatum of mice and according two different treatment schedules. Methods Methylone was given subcutaneously to male Swiss CD1 mice and at an ambient temperature of 26ºC. Treatment A: three doses of 25 mg/Kg at 3.5 h interval between doses for two consecutive days. Treatment B: four doses of 25 mg/Kg at 3 h interval in one day. Results Repeated methylone administration induced hyperthermia and a significant loss in body weight. Following treatment A, methylone induced transient dopaminergic (frontal cortex) and serotoninergic (hippocampus) impairment. Following treatment B, transient dopaminergic (frontal cortex) and serotonergic (frontal cortex and hippocampus) changes 7 days after treatment were found. We found evidence of astrogliosis in the CA1 and the dentate gyrus of the hippocampus following treatment B. The animals also showed an increase in immobility time in the forced swim test, pointing to a depressive-like behavior. In cultured cortical neurons, methylone (for 24 and 48 h) did not induce a remarkable cytotoxic effect. Conclusions The neural effects of methylone differ depending upon the treatment schedule. Neurochemical changes elicited by methylone are apparent when administered at an elevated ambient temperature, four times per day at 3 h intervals, which is in accordance with its short half-life.
Resumo:
The NG2(+) glia, also known as polydendrocytes or oligodendrocyte precursor cells, represent a new entity among glial cell populations in the central nervous system. However, the complete repertoire of their roles is not yet identified. The embryonic NG2(+) glia originate from the Nkx2.1(+) progenitors of the ventral telencephalon. Our analysis unravels that, beginning from E12.5 until E16.5, the NG2(+) glia populate the entire dorsal telencephalon. Interestingly, their appearance temporally coincides with the establishment of blood vessel network in the embryonic brain. NG2(+) glia are closely apposed to developing cerebral vessels by being either positioned at the sprouting tip cells or tethered along the vessel walls. Absence of NG2(+) glia drastically affects the vascular development leading to severe reduction of ramifications and connections by E18.5. By revealing a novel and fundamental role for NG2(+) glia, our study brings new perspectives to mechanisms underlying proper vessels network formation in embryonic brains.
Resumo:
The ability to recognize a shape is linked to figure-ground (FG) organization. Cell preferences appear to be correlated across contrast-polarity reversals and mirror reversals of polygon displays, but not so much across FG reversals. Here we present a network structure which explains both shape-coding by simulated IT cells and suppression of responses to FG reversed stimuli. In our model FG segregation is achieved before shape discrimination, which is itself evidenced by the difference in spiking onsets of a pair of output cells. The studied example also includes feature extraction and illustrates a classification of binary images depending on the dominance of vertical or horizontal borders.
Resumo:
Interactions of neurons with microglia may play a dominant role in sleep regulation. TNF may exert its somnogeneic effects by promoting attraction of microglia and their processes to the vicinity of dendrites and synapses. We found TNF to stimulate neurons (i) to produce CCL2, CCL7 and CXCL10, chemokines acting on mononuclear phagocytes and (ii) to stimulate the expression of the macrophage colony stimulating factor (M-CSF/Csf1), which leads to elongation of microglia processes. TNF may also act on neurons by affecting the expression of genes essential in sleep-wake behavior. The neuronal expression of Homer1a mRNA, increases during spontaneous and enforced periods of wakefulness. Mice with a deletion of Homer1a show a reduced wakefulness with increased non-rapid eye movement (NREM) sleep during the dark period. Recently the TNF-dependent increase of NREM sleep in the dark period of mice with CD40-induced immune activation was found to be associated with decreased expression of Homer1a. In the present study we investigated the effects of TNF and IL-1β on gene expression in cultures of the neuronal cell line HT22 and cortical neurons. TNF slightly increased the expression of Homer1a and IL-1β profoundly enhanced the expression of Early growth response 2 (Egr2). The data presented here indicate that the decreased expression of Homer1a, which was found in the dark period of mice with CD40-induced increase of NREM sleep is not due to inhibitory effects of TNF and IL-1β on the expression of Homer1a in neurons.
Resumo:
The autophagic process is a lysosomal degradation pathway, which is activated during stress conditions, such as starvation or exercise. Regular exercise has beneficial effects on human health, including neuroprotection. However, the cellular mechanisms underlying these effects are incompletely understood. Endurance and a single bout of exercise induce autophagy not only in brain but also in peripheral tissues. However, little is known whether autophagy could be modulated in brain and peripheral tissues by long-term moderate exercise. Here, we examined the effects on macroautophagy process of long-term moderate treadmill training (36 weeks) in adult rats both in brain (hippocampus and cerebral cortex) and peripheral tissues (skeletal muscle, liver and heart). We assessed mTOR activation and the autophagic proteins Beclin 1, p62, LC3B (LC3B-II/LC3B-I ratio) and the lysosomal protein LAMP1, as well as the ubiquitinated proteins. Our results showed in the cortex of exercised rats an inactivation of mTOR, greater autophagy flux (increased LC3-II/LC3-I ratio and reduced p62) besides increased LAMP1. Related with these effects a reduction in the ubiquitinated proteins was observed. No significant changes in the autophagic pathway were found either in hippocampus or in skeletal and cardiac muscle by exercise. Only in the liver of exercised rats mTOR phosphorylation and p62 levels increased, which could be related with beneficial metabolic effects in this organ induced by exercise. Thus, our findings suggest that long-term moderate exercise induces autophagy specifically in the cortex
Resumo:
The autophagic process is a lysosomal degradation pathway, which is activated during stress conditions, such as starvation or exercise. Regular exercise has beneficial effects on human health, including neuroprotection. However, the cellular mechanisms underlying these effects are incompletely understood. Endurance and a single bout of exercise induce autophagy not only in brain but also in peripheral tissues. However, little is known whether autophagy could be modulated in brain and peripheral tissues by long-term moderate exercise. Here, we examined the effects on macroautophagy process of long-term moderate treadmill training (36 weeks) in adult rats both in brain (hippocampus and cerebral cortex) and peripheral tissues (skeletal muscle, liver and heart). We assessed mTOR activation and the autophagic proteins Beclin 1, p62, LC3B (LC3B-II/LC3B-I ratio) and the lysosomal protein LAMP1, as well as the ubiquitinated proteins. Our results showed in the cortex of exercised rats an inactivation of mTOR, greater autophagy flux (increased LC3-II/LC3-I ratio and reduced p62) besides increased LAMP1. Related with these effects a reduction in the ubiquitinated proteins was observed. No significant changes in the autophagic pathway were found either in hippocampus or in skeletal and cardiac muscle by exercise. Only in the liver of exercised rats mTOR phosphorylation and p62 levels increased, which could be related with beneficial metabolic effects in this organ induced by exercise. Thus, our findings suggest that long-term moderate exercise induces autophagy specifically in the cortex
Resumo:
Noradrenergic neurotransmission has been associated with the modulation of higher cognitive functions mediated by the prefrontal cortex. In the present study, the impact of noradrenergic stimulation on the human action-monitoring system, as indexed by eventrelated brain potentials, was examined. After the administration of a placebo or the selective 2 -adrenoceptor antagonist yohimbine, which stimulates firing in the locus ceruleus and noradrenaline release, electroencephalograpic recordings were obtained from healthy volunteers performing a letter flanker task. Yohimbine led to an increase in the amplitude of the error-related negativity in conjunction with a significant reduction of action errors. Reaction times were unchanged, and the drug did not modify the N2 in congruent versus incongruent trials, a measure of preresponse conflict, or posterror adjustments as measured by posterror slowing of reaction time. The present findings suggest that the locus ceruleusnoradrenaline system exerts a rather specific effect on human action monitoring.
Resumo:
An increase in cognitive control has been systematically observed in responses produced immediately after the commission of an error. Such responses show a delay in reaction time (post-error slowing) and an increase in accuracy. To characterize the neurophysiological mechanism involved in the adaptation of cognitive control, we examined oscillatory electrical brain activity by electroencephalogram and its corresponding neural network by event-related functional magnetic resonance imaging in three experiments. We identified a new oscillatory thetabeta component related to the degree of post-error slowing in the correct responses following an erroneous trial. Additionally, we found that the activity of the right dorsolateral prefrontal cortex, the right inferior frontal cortex, and the right superior frontal cortex was correlated with the degree of caution shown in the trial following the commission of an error. Given the overlap between this brain network and the regions activated by the need to inhibit motor responses in a stop-signal manipulation, we conclude that the increase in cognitive control observed after the commission of an error is implemented through the participation of an inhibitory mechanism.