982 resultados para Delayed differential equation
Resumo:
We demonstrate a coexistence of coherent and incoherent modes in the optical comb generated by a passively mode-locked quantum dot laser. This is experimentally achieved by means of optical linewidth, radio frequency spectrum, and optical spectrum measurements and confirmed numerically by a delay-differential equation model showing excellent agreement with the experiment. We interpret the state as a chimera state. © 2014 American Physical Society.
Resumo:
The objective of this study is to demonstrate using weak form partial differential equation (PDE) method for a finite-element (FE) modeling of a new constitutive relation without the need of user subroutine programming. The viscoelastic asphalt mixtures were modeled by the weak form PDE-based FE method as the examples in the paper. A solid-like generalized Maxwell model was used to represent the deforming mechanism of a viscoelastic material, the constitutive relations of which were derived and implemented in the weak form PDE module of Comsol Multiphysics, a commercial FE program. The weak form PDE modeling of viscoelasticity was verified by comparing Comsol and Abaqus simulations, which employed the same loading configurations and material property inputs in virtual laboratory test simulations. Both produced identical results in terms of axial and radial strain responses. The weak form PDE modeling of viscoelasticity was further validated by comparing the weak form PDE predictions with real laboratory test results of six types of asphalt mixtures with two air void contents and three aging periods. The viscoelastic material properties such as the coefficients of a Prony series model for the relaxation modulus were obtained by converting from the master curves of dynamic modulus and phase angle. Strain responses of compressive creep tests at three temperatures and cyclic load tests were predicted using the weak form PDE modeling and found to be comparable with the measurements of the real laboratory tests. It was demonstrated that the weak form PDE-based FE modeling can serve as an efficient method to implement new constitutive models and can free engineers from user subroutine programming.
Resumo:
Mathematics Subject Classification 2010: 26A33, 33E12.
Resumo:
2002 Mathematics Subject Classification: 65C05.
Resumo:
2000 Mathematics Subject Classification: 60J80, 60J85
Resumo:
2000 Mathematics Subject Classification: 45G15, 26A33, 32A55, 46E15.
Resumo:
MSC 2010: 35R11, 44A10, 44A20, 26A33, 33C45
Resumo:
2000 Mathematics Subject Classification: 65M06, 65M12.
Resumo:
2000 Mathematics Subject Classification: 65M06, 65M12.
Resumo:
We argue that the physics of interacting Kelvin Waves (KWs) is highly nontrivial and cannot be understood on the basis of pure dimensional reasoning. A consistent theory of KW turbulence in superfluids should be based upon explicit knowledge of their interactions. To achieve this, we present a detailed calculation and comprehensive analysis of the interaction coefficients for KW turbuelence, thereby, resolving previous mistakes stemming from unaccounted contributions. As a first application of this analysis, we derive a local nonlinear (partial differential) equation. This equation is much simpler for analysis and numerical simulations of KWs than the Biot-Savart equation, and in contrast to the completely integrable local induction approximation (in which the energy exchange between KWs is absent), describes the nonlinear dynamics of KWs. Second, we show that the previously suggested Kozik-Svistunov energy spectrum for KWs, which has often been used in the analysis of experimental and numerical data in superfluid turbulence, is irrelevant, because it is based upon an erroneous assumption of the locality of the energy transfer through scales. Moreover, we demonstrate the weak nonlocality of the inverse cascade spectrum with a constant particle-number flux and find resulting logarithmic corrections to this spectrum.
Resumo:
A tanulmány a variációszámítás gazdasági alkalmazásaiból ismertet hármat. Mindhárom alkalmazás a Leontief-modellen alapszik. Az optimális pályák vizsgálata után arra keressük a választ, hogy az Euler–Lagrange-differenciálegyenlet rendszerrel kapott megoldások valóban optimális megoldásai-e a modelleknek. Arra a következtetésre jut a tanulmány, hogy csak pótlólagos közgazdasági feltételek bevezetésével határozhatók meg az optimális megoldások. Ugyanakkor a megfogalmazott feltételek segítségével az ismertetett modellek egy általánosabb keretbe illeszthetők. A tanulmány végső eredménye az, hogy mind a három modell optimális megoldása a Neumann-sugárnak felel meg. /===/ The study presents three economic applications of variation calculations. All three rely on the Leontief model. After examination of the optimal courses, an answer is sought to whether the solutions to the Euler–Lagrange differential equation system are really opti-mal solutions to the models. The study concludes that the optimal solutions can only be determined by introducing additional economic conditions. At the same time, the models presented can be fitted into a general framework with the help of the conditions outlined. The final conclusion of the study is that the optimal solution of all three models fits into the Neumann band.
Resumo:
Ennek a cikknek az a célja, hogy áttekintést adjon annak a folyamatnak néhány főbb állomásáról, amit Black, Scholes és Merton opcióárazásról írt cikkei indítottak el a 70-es évek elején, és ami egyszerre forradalmasította a fejlett nyugati pénzügyi piacokat és a pénzügyi elméletet. / === / This review article compares the development of financial theory within and outside Hungary in the last three decades starting with the Black-Scholes revolution. Problems like the term structure of interest rate volatilities which is in the focus of many research internationally has not received the proper attention among the Hungarian economists. The article gives an overview of no-arbitrage pricing, the partial differential equation approach and the related numerical techniques, like the lattice methods in pricing financial derivatives. The relevant concepts of the martingal approach are overviewed. There is a special focus on the HJM framework of the interest rate development. The idea that the volatility and the correlation can be traded is a new horizon to the Hungarian capital market.
Resumo:
Az x''+f(x) x'+g(x) = 0 alakú Liénard-típusú differenciálegyenlet központi szerepet játszik az üzleti ciklusok Káldor-Kalecki-féle [3,4] és Goodwin-féle [2] modelljeiben, sőt egy a munkanélküliség és vállalkozás-ösztönzések ciklikus változásait leíró újabb modellben [1] is. De ugyanez a nemlineáris egyenlettípus a gerjesztett ingák és elektromos rezgőkörök elméletét is felöleli [5]. Az ezzel kapcsolatos irodalom nagyrészt a határciklusok létezését vizsgálja (pl. [5]), pedig az alapvető stabilitási kérdések jóval áttekinthetőbb módon kezelhetők, s a kapott eredmények közvetve a határciklusok létezésének feltételeit is sokkal jobban be tudják határolni. Jelen dolgozatban az egyváltozós analízis hatékony nyelvezetével olyan egyszerűen megfogalmazható eredményekhez jutunk, amelyek képesek kitágítani az üzleti és más közgazdasági ciklusok modelljeinek kereteit, illetve pl. az [1]-beli modellhez újabb szemléltető speciális eseteket is nyerünk. ____ The Liénard type differential equation of the form x00 + f(x) ¢ x0 + g(x) = 0 has a central role in business cycle models by Káldor [3], Kalecki [4] and Goodwin [2], moreover in a new model describing the cyclical behavior of unemployment and entrepreneurship [1]. The same type of nonlinear equation explains the features of forced pendulums and electric circuits [5]. The related literature discusses mainly the existence of limit cycles, although the fundamental stability questions of this topic can be managed much more easily. The achieved results also outline the conditions for the existence of limit cycles. In this work, by the effective language of real valued analysis, we obtain easy-formulated results which may broaden the frames of economic and business cycle models, moreover we may gain new illustrative particular cases for e.g., [1].
Resumo:
The solution of partial differential equation of seepage problems is difficult to find analytically, especially for situations that involve great complexity. To overcome this problem, software based on finite differences and finite elements are usually used. This work presents the use of a finite element software, the GEO5, to solve the seepage problem at a dam of very complex section, the dam Eng. Armando Ribeiro Gonçalves, which at the end of its construction suffered rupture of the upstream slope at the central dam and then went through a process of reconstruction and auscultation. The analyses were performed for the operating condition of the reservoir, with an established flow. A numerical model was developed based on the level readings of the reservoir water and their piezometric readings as a proposal for the evaluation and future behavior prediction of the dam on established flow conditions. The use of constitutive models with the aid of computer systems is reflected in a way to predict future risk situations so they can be prevented
Resumo:
Sea lice (Lepeophtheirus salmonis) are an economically significant parasite in salmonid aquaculture. They exhibit temperature-dependent development rates and salinity-dependent mortality, which can greatly impact sea lice population dynamics, but no deterministic models have incorporated these seasonal variables. To understand how seasonality affects sea lice population dynamics, I derive a delay differential equation model with temperature and salinity dependence. I find that peak reproductive output in Newfoundland and British Columbia differs by four months. A sensitivity analysis shows sea lice abundance is most sensitive to variation in mean annual water temperature and salinity, whereas it is lease sensitive to infection rate. Additionally, I investigate the effects of production cycle timing on sea lice management and find that optimal production cycle start times are between the 281st and 337th days of the year in Newfoundland. I also demonstrate that adjusting follow-up treatment timing in response to temperature can improve treatment regimes. My results suggest that effective sea lice management requires consideration of local temperature and salinity patterns.