961 resultados para Defect-free growth


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Astrocytes in neuron-free cultures typically lack processes, although they are highly process-bearing in vivo. We show that basic fibroblast growth factor (bFGF) induces cultured astrocytes to grow processes and that Ras family GTPases mediate these morphological changes. Activated alleles of rac1 and rhoA blocked and reversed bFGF effects when introduced into astrocytes in dissociated culture and in brain slices using recombinant adenoviruses. By contrast, dominant negative (DN) alleles of both GTPases mimicked bFGF effects. A DN allele of Ha-ras blocked bFGF effects but not those of Rac1-DN or RhoA-DN. Our results show that bFGF acting through c-Ha-Ras inhibits endogenous Rac1 and RhoA GTPases thereby triggering astrocyte process growth, and they provide evidence for the regulation of this cascade in vivo by a yet undetermined neuron-derived factor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We characterized the novel Schizosaccharomyces pombe genes myo4+ and myo5+, both of which encode myosin-V heavy chains. Disruption of myo4 caused a defect in cell growth and led to an abnormal accumulation of secretory vesicles throughout the cytoplasm. The mutant cells were rounder than normal, although the sites for cell polarization were still established. Elongation of the cell ends and completion of septation required more time than in wild-type cells, indicating that Myo4 functions in polarized growth both at the cell ends and during septation. Consistent with this conclusion, Myo4 was localized around the growing cell ends, the medial F-actin ring, and the septum as a cluster of dot structures. In living cells, the dots of green fluorescent protein-tagged Myo4 moved rapidly around these regions. The localization and movement of Myo4 were dependent on both F-actin cables and its motor activity but seemed to be independent of microtubules. Moreover, the motor activity of Myo4 was essential for its function. These results suggest that Myo4 is involved in polarized cell growth by moving with a secretory vesicle along the F-actin cables around the sites for polarization. In contrast, the phenotype of myo5 null cells was indistinguishable from that of wild-type cells. This and other data suggest that Myo5 has a role distinct from that of Myo4.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acclimation of photosynthesis to elevated CO2 has previously been shown to be more pronounced when N supply is poor. Is this a direct effect of N or an indirect effect of N by limiting the development of sinks for photoassimilate? This question was tested by growing a perennial ryegrass (Lolium perenne) in the field under elevated (60 Pa) and current (36 Pa) partial pressures of CO2 (pCO2) at low and high levels of N fertilization. Cutting of this herbage crop at 4- to 8-week intervals removed about 80% of the canopy, therefore decreasing the ratio of photosynthetic area to sinks for photoassimilate. Leaf photosynthesis, in vivo carboxylation capacity, carbohydrate, N, ribulose-1,5-bisphosphate carboxylase/oxygenase, sedoheptulose-1,7-bisphosphatase, and chloroplastic fructose-1,6-bisphosphatase levels were determined for mature lamina during two consecutive summers. Just before the cut, when the canopy was relatively large, growth at elevated pCO2 and low N resulted in significant decreases in carboxylation capacity and the amount of ribulose-1,5-bisphosphate carboxylase/oxygenase protein. In high N there were no significant decreases in carboxylation capacity or proteins, but chloroplastic fructose-1,6-bisphosphatase protein levels increased significantly. Elevated pCO2 resulted in a marked and significant increase in leaf carbohydrate content at low N, but had no effect at high N. This acclimation at low N was absent after the harvest, when the canopy size was small. These results suggest that acclimation under low N is caused by limitation of sink development rather than being a direct effect of N supply on photosynthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyethylene glycol (PEG), which is often used to impose low water potentials (ψw) in solution culture, decreases O2 movement by increasing solution viscosity. We investigated whether this property causes O2 deficiency that affects the elongation or metabolism of maize (Zea mays L.) primary roots. Seedlings grown in vigorously aerated PEG solutions at ambient solution O2 partial pressure (pO2) had decreased steady-state root elongation rates, increased root-tip alanine concentrations, and decreased root-tip proline concentrations relative to seedlings grown in PEG solutions of above-ambient pO2 (alanine and proline accumulation are responses to hypoxia and low ψw, respectively). Measurements of root pO2 were made using an O2 microsensor to ensure that increased solution pO2 did not increase root pO2 above physiological levels. In oxygenated PEG solutions that gave maximal root elongation rates, root pO2 was similar to or less than (depending on depth in the tissue) pO2 of roots growing in vermiculite at the same ψw. Even without PEG, high solution pO2 was necessary to raise root pO2 to the levels found in vermiculite-grown roots. Vermiculite was used for comparison because it has large air spaces that allow free movement of O2 to the root surface. The results show that supplemental oxygenation is required to avoid hypoxia in PEG solutions. Also, the data suggest that the O2 demand of the root elongation zone may be greater at low relative to high ψw, compounding the effect of PEG on O2 supply. Under O2-sufficient conditions root elongation was substantially less sensitive to the low ψw imposed by PEG than that imposed by dry vermiculite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ubiquitin-conjugating enzymes (E2 or Ubc) constitute a family of conserved proteins that play a key role in ubiquitin-dependent degradation of proteins in eukaryotes. We describe here a transgenic mouse strain where retrovirus integration into an Ubc gene, designated UbcM4, results in a recessive-lethal mutation. UbcM4 is the mouse homologue of the previously described human UbcH7 that is involved in the in vitro ubiquitination of several proteins including the tumor suppressor protein p53. The provirus is located in the first intron of the gene. When both alleles are mutated the level of steady-state mRNA is reduced by about 70%. About a third of homozygous mutant embryos die around day 11.5 of gestation. Embryos that survive that stage are growth retarded and die perinatally. The lethal phenotype is most likely caused by impairment of placenta development as this is the only organ that consistently showed pathological defects. The placental labyrinth is drastically reduced in size and vascularization is disturbed. The UbcM4 mouse mutant represents the first example in mammals of a mutation in a gene involved in ubiquitin conjugation. Its recessive-lethal phenotype demonstrates that the ubiquitin system plays an essential role during mouse development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The initiation and morphogenesis of cutaneous appendages depend on a series of reciprocal signaling events between the epithelium and mesenchyme of the embryonic skin. In the development of feather germs, early dermal signals induce the formation of epidermal placodes that in turn signal the mesoderm to form dermal condensations immediately beneath them. We find a spatially and temporally restricted pattern of transcription for the genes that encode fibroblast growth factor (FGF) 2 and FGF receptor (FGFR) 1 in developing feather germs of the chicken embryo. FGF-2 expression is restricted to the epidermal placodes, whereas FGFR-1 expression is limited to the dermal condensations. Transcription of these genes could not be detected in skins of scaleless (sc/sc) embryos that fail to develop feathers as a result of an ectodermal defect. Treatment of sc/sc skins with FGF-2 results in the formation of feathers at the site of application of the growth factor and the induced feathers express FGFR-1 in their dermal condensations. Thus, we have established FGF-2 as an epidermal signal in early feather germ formation. The observation that FGF-2 can rescue the mutant phenotype of sc/sc embryos suggests that FGF-2 either is, or is downstream from, the signal that the sc/sc mutant ectoderm fails to generate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prostate carcinoma is the second leading cause of death from malignancy in men in the United States. Prostate cancer cells express type I insulin-like growth factor receptor (IGF-IR) and prostate cancer selectively metastazises to bone, which is an environment rich in insulin-like growth factors (IGFs), thereby supporting a paracrine action for cancer cell proliferation. We asked whether the IGF-IR is coupled to tumorigenicity and invasion of prostate cancer. When rat prostate adenocarcinoma cells (PA-III) were stably transfected with an antisense IGF-IR expression construct containing the ZnSO4-inducible metallothionein-1 transcriptional promoter, the transfectants expressed high levels of IGF-IR antisense RNA after induction with ZnSO4, which resulted in dramatically reduced levels of endogenous IGF-IR mRNA. A significant reduction in expression both of tissue-type plasminogen activator and of urokinase-type plasminogen activator occurred in PA-III cells accompanying inhibition of IGF-IR. Subcutaneous injection of either nontransfected PA-III or PA-III cells transfected with vector minus the IGF-IR insert into nude mice resulted in large tumors after 4 weeks. However, mice injected with IGF-IR antisense-transfected PA-III cells either developed tumors 90% smaller than controls or remained tumor-free after 60 days of observation. When control-transfected PA-III cells were inoculated over the abraded calvaria of nude mice, large tumors formed with invasion of tumor cells into the brain parenchyma. In contrast, IGF-IR antisense transfectants formed significantly smaller tumors with no infiltration into brain. These results indicate an important role for the IGF/IGF-IR pathway in metastasis and provide a basis for targeting IGF-IR as a potential treatment for prostate cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Examination of the interactions involving transcription factor E2F activity during cell growth and terminal differentiation suggests distinct roles for Rb family members in the regulation of E2F accumulation. The major species of E2F in quiescent cells is a complex containing the E2F4 product in association with the Rb-related p130 protein. As cells enter the cell cycle, this complex disappears, and there is a concomitant accumulation of free E2F activity of which E2F4 is a major component. E2F4 then associates with the Rb-related p107 protein as cells enter S phase. Rb can be found in interactions with each E2F species, including E2F4, during G1, but there appears to be a limited amount of Rb with respect to E2F, likely due to the maintenance of most Rb protein in an inactive state by phosphorylation. A contrasting circumstance can be found during the induction of HL60 cell differentiation. As these cells exit the cell cycle, active Rb protein appears to exceed E2F, as there is a marked accumulation of E2F-Rb interactions, involving all E2F species, including E2F4, which is paralleled by the conversion of Rb from a hyperphosphorylated state to a hypophosphorylated state. These results suggest that the specific ability of Rb protein to interact with each E2F species, dependent on concentration of active Rb relative to accumulation of E2F, may be critical in cell-growth decisions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new approach to the analysis of metabolic pathways involving poorly water-soluble intermediates is proposed. It relies upon the ability of the hydrophobic intermediates formed by a sequence of intracellular reactions to cross the membrane(s) and partition between aqueous and organic phases, when cells are incubated in the presence of a nonpolar and nontoxic organic solvent. As a result of this thermodynamically driven efflux of the formed intermediates from the cell, they accumulate in the organic medium in sufficient quantities for GC-MS analysis and identification. This enables direct determination of the sequence of chemical reactions involved with no requirement for the isolation of each individual metabolite from a cell-free extract. The feasibility of the proposed methodology has been demonstrated by the elucidation of the biosynthesis of (R)-gamma-decalactone from (R)-ricinoleic acid catalyzed by the yeast Sporidiobolus ruinenii grown in the presence of decane. The corresponding 4-hydroxy-acid intermediates, formed in the course of beta-oxidation of (R)-ricinoleic acid, were simultaneously observed in a single experiment on the same chromatogram. Potential applications of this proposed methodology are briefly discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A genetic approach has been established that combines the advantages of blastocyst complementation with the experimental attributes of the developing lens for the functional analysis of genes governing cellular proliferation, terminal differentiation, and apoptosis. This lens complementation system (LCS) makes use of a mutant mouse strain, aphakia (ak), homozygotes of which fail to develop an ocular lens. We demonstrate that microinjection of wild-type embryonic stem (ES) cells into ak/ak blastocysts produces chimeras with normal ES-cell-derived lenses and that microinjection of Rb-/- ES cells generates an aberrant lens phenotype identical to that obtained through conventional gene targeting methodology. Our determination that a cell autonomous defect underlies the aphakia condition assures that lenses generated through LCS are necessarily ES-cell-derived. LCS provides for the rapid phenotypic analysis of loss-of-function mutations, circumvents the need for germ-line transmission of null alleles, and, most significantly, facilitates the study of essential genes whose inactivation is associated with early lethal phenotypes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The helix-coil transition equilibrium of polypeptides in aqueous solution was studied by molecular dynamics simulation. The peptide growth simulation method was introduced to generate dynamic models of polypeptide chains in a statistical (random) coil or an alpha-helical conformation. The key element of this method is to build up a polypeptide chain during the course of a molecular transformation simulation, successively adding whole amino acid residues to the chain in a predefined conformation state (e.g., alpha-helical or statistical coil). Thus, oligopeptides of the same length and composition, but having different conformations, can be incrementally grown from a common precursor, and their relative conformational free energies can be calculated as the difference between the free energies for growing the individual peptides. This affords a straightforward calculation of the Zimm-Bragg sigma and s parameters for helix initiation and helix growth. The calculated sigma and s parameters for the polyalanine alpha-helix are in reasonable agreement with the experimental measurements. The peptide growth simulation method is an effective way to study quantitatively the thermodynamics of local protein folding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The survival of cultured mouse hippocampal neurons was found to be greatly enhanced by micromolar concentrations of the excitatory neurotransmitter glutamate. Blockade of kainate/AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) glutamate receptors increased the rate of neuron death, suggesting that endogenous glutamate in the cultures promotes survival. Addition of glutamate (0.5-1 microM) further increased neuron survival, whereas glutamate in excess of 20 microM resulted in increased death. Thus, the survival vs. glutamate dose-response relation is bell-shaped with an optimal glutamate concentration near 1 microM. We found that hippocampal neurons from mice with the genetic defect trisomy 16 (Ts16) died 2-3 times faster than normal (euploid) neurons. Moreover, glutamate, at all concentrations tested, failed to increase survival of Ts16 neurons. In contrast, the neurotrophic polypeptide basic fibroblast growth factor did increase the survival of Ts16 and euploid neurons. Ts16 is a naturally occurring mouse genetic abnormality, the human analog of which (Down syndrome) leads to altered brain development and Alzheimer disease. These results demonstrate that the Ts16 genotype confers a defect in the glutamate-mediated survival response of hippocampal neurons and that this defect can contribute to their accelerated death.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reef-building corals and other tropical anthozoans harbor endosymbiotic dinoflagellates. It is now recognized that the dinoflagellates are fundamental to the biology of their hosts, and their carbon and nitrogen metabolisms are linked in important ways. Unlike free living species, growth of symbiotic dinoflagellates is unbalanced and a substantial fraction of the carbon fixed daily by symbiont photosynthesis is released and used by the host for respiration and growth. Release of fixed carbon as low molecular weight compounds by freshly isolated symbiotic dinoflagellates is evoked by a factor (i.e., a chemical agent) present in a homogenate of host tissue. We have identified this "host factor" in the Hawaiian coral Pocillopora damicornis as a set of free amino acids. Synthetic amino acid mixtures, based on the measured free amino acid pools of P. damicornis tissues, not only elicit the selective release of 14C-labeled photosynthetic products from isolated symbiotic dinoflagellates but also enhance total 14CO2 fixation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At least two kidney epithelial cell lines, the Madin-Darby canine kidney (MDCK) and the murine inner medullary collecting duct line mIMCD-3, can be induced to form branching tubular structures when cultured with hepatocyte growth factor (HGF) plus serum in collagen I gels. In our studies, whereas MDCK cells remained unable to form tubules in the presence of serum alone, mIMCD-3 cells formed impressive branching tubular structures with apparent lumens, suggesting the existence of specific factors in serum that are tubulogenic for mIMCD-3 cells but not for MDCK cells. Since normal serum does not contain enough HGF to induce tubulogenesis, these factors appeared to be substances other than HGF. This was also suggested by another observation: when MDCK cells or mIMCD-3 cells were cocultured under serum-free conditions with the embryonic kidney, both cell types formed branching tubular structures similar to those induced by HGF; however, only in the case of MDCK cells could this be inhibited by neutralizing antibodies against HGF. Thus, the embryonic kidney produces growth factors other than HGF capable of inducing tubule formation in the mIMCD-3 cells. Of a number of growth factors examined, transforming growth factor alpha (TGF-alpha) and epidermal growth factor (EGF) were found to be tubulogenic for mIMCD-3 cells. Whereas only HGF was a potent tubulogenic factor for MDCK cells, HGF, TGF-alpha, and EGF were potent tubulogenic factors for mIMCD-3 cells. Nevertheless, there were marked differences in the capacity of these tubulogenic factors to induce tubulation as well as branching events in those tubules that did form (HGF >> TGF-alpha > EGF). Thus, at least three different growth factors can induce tubulogenesis and branching in a specific epithelial cell in vitro (though to different degrees), and different epithelial cells that are capable of forming branching tubular structures demonstrate vastly different responses to tubulogenic growth factors. The results are discussed in the context of branching morphogenesis during epithelial tissue development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antisense oligodeoxyribonucleotides targeted to the epidermal growth factor (EGF) receptor were encapsulated into liposomes linked to folate via a polyethylene glycol spacer (folate-PEG-liposomes) and efficiently delivered into cultured KB cells via folate receptor-mediated endocytosis. The oligonucleotides were a phosphodiester 15-mer antisense to the EGF receptor (EGFR) gene stop codon (AEGFR2), the same sequence with three phosphorothioate linkages at each terminus (AEGFR2S), a randomized 15-mer control of similar base composition to AEGFR2 (RC15), a 14-mer control derived from a symmetrized Escherichia coli lac operator (LACM), and the 5'-fluorescein-labeled homologs of several of the above. Cellular uptake of AEGFR2 encapsulated in folate-PEG-liposomes was nine times higher than AEGFR2 encapsulated in nontargeted liposomes and 16 times higher than unencapsulated AEGFR2. Treatment of KB cells with AEGFR2 in folate-PEG-liposomes resulted in growth inhibition and significant morphological changes. Curiously, AEGFR2 and AEGFR2S encapsulated in folate-PEG-liposomes exhibited virtually identical growth inhibitory effects, reducing KB cell proliferation by > 90% 48 hr after the cells were treated for 4 hr with 3 microM oligonucleotide. Free AEGFR2 caused almost no growth inhibition, whereas free AEGFR2S was only one-fifth as potent as the folate-PEG-liposome-encapsulated oligonucleotide. Growth inhibition of the oligonucleotide-treated cells was probably due to reduced EGFR expression because indirect immunofluorescence staining of the cells with a monoclonal antibody against the EGFR showed an almost quantitative reduction of the EGFR in cells treated with folate-PEG-liposome-entrapped AEGFR2. These results suggest that antisense oligonucleotide encapsulation in folate-PEG-liposomes promise efficient and tumor-specific delivery and that phosphorothioate oligonucleotides appear to offer no major advantage over native phosphodiester DNA when delivered by this route.