958 resultados para Defect repair
Resumo:
The Editors welcome topical correspondence from readers relating to articles published in the Journal. Responses should be sent electronically via the BJS website (www.bjs.co.uk). All letters will be reviewed and, if approved, appear on the website. A selection of these will be edited and published in the Journal. Letters must be no more than 250 words in length.
Resumo:
The human Rad51 recombinase is essential for the repair of double-strand breaks in DNA that occur in somatic cells after exposure to ionising irradiation, or in germ line cells undergoing meiotic recombination. The initiation of double-strand break repair is thought to involve resection of the double-strand break to produce 3'-ended single-stranded (ss) tails that invade homologous duplex DNA. Here, we have used purified proteins to set up a defined in vitro system for the initial strand invasion step of double-strand break repair. We show that (i) hRad51 binds to the ssDNA of tailed duplex DNA molecules, and (ii) hRad51 catalyses the invasion of tailed duplex DNA into homologous covalently closed DNA. Invasion is stimulated by the single-strand DNA binding protein RPA, and by the hRad52 protein. Strikingly, hRad51 forms terminal nucleoprotein filaments on either 3' or 5'-ssDNA tails and promotes strand invasion without regard for the polarity of the tail. Taken together, these results show that hRad51 is recruited to regions of ssDNA occurring at resected double-strand breaks, and that hRad51 shows no intrinsic polarity preference at the strand invasion step that initiates double-strand break repair.
Resumo:
Monoubiquitination of the Fanconi anaemia protein FANCD2 is a key event leading to repair of interstrand cross-links. It was reported earlier that FANCD2 co-localizes with NBS1. However, the functional connection between FANCD2 and MRE11 is poorly understood. In this study, we show that inhibition of MRE11, NBS1 or RAD50 leads to a destabilization of FANCD2. FANCD2 accumulated from mid-S to G2 phase within sites containing single-stranded DNA (ssDNA) intermediates, or at sites of DNA damage, such as those created by restriction endonucleases and laser irradiation. Purified FANCD2, a ring-like particle by electron microscopy, preferentially bound ssDNA over various DNA substrates. Inhibition of MRE11 nuclease activity by Mirin decreased the number of FANCD2 foci formed in vivo. We propose that FANCD2 binds to ssDNA arising from MRE11-processed DNA double-strand breaks. Our data establish MRN as a crucial regulator of FANCD2 stability and function in the DNA damage response.
Resumo:
An ideal substitute to treat a nerve gap has not been found. Initially, silicone conduits were employed. Later, conduits were fabricated from collagen or polyesters carbonates. More recently, it has been shown that a bioresorbable material, poly-3-hydroxybutyrate (PHB), can enhance nerve repair. The present investigation shows the use of fibrin as a conduit to guide nerve regeneration and bridge nerve defects. In this study we prepared and investigated a novel nerve conduit made from fibrin glue. Using a rodent sciatic nerve injury model (10-mm gap), we compared the extent of nerve regeneration through the new fibrin conduits versus established PHB conduits. After 2 and 4 weeks, conduits containing proximal and distal stumps were harvested. We evaluated the initial axon and Schwann cell stimulation using immunohistochemistry. The conduits presented full tissue integration and were completely intact. Axons crossed the gap after 1 month. Immunohistochemistry using the axonal marker PGP 9.5 showed a superior nerve regeneration distance in the fibrin conduit compared with PHB (4.1 mm versus 1.9 mm). Schwann cell intrusion (S100 staining) was similarly enhanced in the fibrin conduits, both from the proximal (4.2 mm versus 2.1 mm) and distal ends (3.2 mm versus 1.7 mm). These findings suggest an advantage of the new fibrin conduit for the important initial phase of peripheral nerve regeneration. The use of fibrin glue as a conduit is a step toward a usable graft to bridge peripheral nerve lesions. This might be clinically interesting, given the widespread acceptance of fibrin glue among the surgical community.
Resumo:
OBJECTIVE: To review the presentation and evaluation of laryngotracheoesophageal clefts as well as their treatment modalities, especially endoscopic closure. STUDY DESIGN: retrospective case series. METHODS: All patients treated for laryngotracheoesophageal clefts in our clinic during the last 15 years were included. Analysis of preoperative data, surgical success and functional outcome was performed. RESULTS: A total of 18 patients were included in our study. Cleft distribution was: type I (n=1), type II (n=3), type IIIa (n=5), type IIIb (n=8) and type IVa (n=1). All clefts were closed endoscopically by CO2 laser repair except for two patients who benfited from open surgery (one type I, one type IIIb). 7 of our 18 patients (39%) experienced a complication necessitating reoperation. Surgical treatment of LTEC allowed cessation of feeding tube assistance and artificial ventilation in 47% and 42% of patients respectively. CONCLUSION: Surgical treatement of laryngotracheoesophageal clefts remains a complex procedure with a high rate of morbidity for high grade clefts. Post-surgical difficulties in feeding and breathing are associated with concomitant congenital anomalies. Endoscopic repair is a successful technique for treating up to grade IIIa laryngeal clefts. Further investigation is needed to assess the best approach for treating longer clefts.
Resumo:
Helminth parasites can cause considerable damage when migrating through host tissues, thus making rapid tissue repair imperative to prevent bleeding and bacterial dissemination particularly during enteric infection. However, how protective type 2 responses targeted against these tissue-disruptive multicellular parasites might contribute to homeostatic wound healing in the intestine has remained unclear. Here, we observed that mice lacking antibodies (Aid-/-) or activating Fc receptors (Fcrg-/-) displayed impaired intestinal repair following infection with the murine helminth Heligmosomoides polygyrus bakeri (Hpb), whilst transfer of immune serum could partially restore chemokine production and rescue wound healing in Aid-/- mice. Impaired healing was associated with a reduced expression of CXCR2 ligands (CXCL2/3) by macrophages (MΦ) and myofibroblasts (MF) within intestinal lesions. Whilst antibodies and helminths together triggered CXCL2 production by MΦ in vitro via surface FcR engagement, chemokine secretion by intestinal MF was elicited by helminths directly via Fcrg-chain/dectin2 signaling. Blockade of CXCR2 during Hpb challenge infection reproduced the delayed wound repair observed in helminth infected Aid-/- and Fcrg-/- mice. Finally, conditioned media from human MΦ stimulated with infective larvae of the helminth Ascaris suum together with immune serum, promoted CXCR2-dependent scratch wound closure by human MF in vitro. Collectively our findings suggest that helminths and antibodies instruct a chemokine driven MΦ-MF crosstalk to promote intestinal repair, a capacity that may be harnessed in clinical settings of impaired wound healing.
Resumo:
AIM: Transanal minimal invasive surgery (TAMIS) of rectal lesions is increasingly being used, but the technique is not yet standardized. The aims of this study were to evaluate peri-operative complications and long-term functional outcome of the technique and to analyse whether or not the rectal defect needs to be closed. METHOD: Consecutive patients undergoing TAMIS using the SILS port (Covidien) and standard laparoscopic instruments were studied. RESULTS: Seventy-five patients (68% male) of mean age 67 (± 15) years underwent single-port transanal surgery at three different centres for 37 benign lesions and 38 low-risk cancers located at a mean of 6.4 ± 2.3 cm from the anal verge. The median operating time was 77 (25-245) min including a median time for resection of 36 (15-75) min and for closure of the rectal defect of 38 (9-105) min. The defect was closed in 53% using interrupted (75%) or a running suture (25%). Intra-operative complications occurred in six (8%) patients and postoperative morbidity was 19% with only one patient requiring reoperation for Grade IIIb local infection. There was no difference in the incidence of complications whether the rectal defect was closed or left open. Patients were discharged after 3.4 (1-21) days. At a median follow-up of 12.8 (2-29) months, the continence was normal (Vaizey score of 1.5; 0-16). CONCLUSION: Transanal rectal resection can be safely and efficiently performed by means of a SILS port and standard laparoscopic instruments. The rectal defect may be left open and at 1 year continence is not compromised.
Resumo:
We have investigated doped and undoped layers of microcrystalline silicon prepared by hot-wire chemical vapour deposition optically, electrically and by means of transmission electron microscopy. Besides needle-like crystals grown perpendicular to the substrate's surface, all of the layers contained a noncrystalline phase with a volume fraction between 4% and 25%. A high oxygen content of several per cent in the porous phase was detected by electron energy loss spectrometry. Deep-level transient spectroscopy of the crystals suggests that the concentration of electrically active defects is less than 1% of the undoped background concentration of typically 10^17 cm -3. Frequency-dependent measurements of the conductance and capacitance perpendicular to the substrate surface showed that a hopping process takes place within the noncrystalline phase parallel to the conduction in the crystals. The parasitic contribution to the electrical circuit arising from the porous phase is believed to be an important loss mechanism in the output of a pin-structured photovoltaic solar cell deposited by hot-wire CVD.
Resumo:
The optical and electrical recovery processes of the metastable state of the EL2 defect artificially created in n‐type GaAs by boron or oxygen implantation are analyzed at 80 K using optical isothermal transient spectroscopy. In both cases, we have found an inhibition of the electrical recovery and the existence of an optical recovery in the range 1.1-1.4 eV, competing with the photoquenching effect. The similar results obtained with both elements and the different behavior observed in comparison with the native EL2 defect has been related to the network damage produced by the implantation process. From the different behavior with the technological process, it can be deduced that the electrical and optical anomalies have a different origin. The electrical inhibition is due to the existence of an interaction between the EL2 defect and other implantation‐created defects. However, the optical recovery seems to be related to a change in the microscopic metastable state configuration involving the presence of vacancies
Resumo:
OBJECTIVES: The objectives of this study are to present the technique and results of endoscopic repair of laryngotracheoesophageal clefts (LTEC) extending caudally to the cricoid plate into the cervical trachea and to revisit the classification of LTEC. METHODS: The authors conducted a retrospective case analysis consisting of four infants with complete laryngeal clefts (extending through the cricoid plate in three cases and down into the cervical trachea in one case) treated endoscopically by CO2 laser incision of the mucosa and two-layer endoscopic closure of the cleft without postoperative intubation or tracheotomy. RESULTS: All four infants resumed spontaneous respiration without support after a mean postoperative period of 3 days with continuous positive airway pressure (CPAP). They accepted oral feeding within 5 postoperative days (range, 3-11 days). No breakdown of endoscopic repair was encountered. After a mean follow up of 48 months (range, 3 mos to 7 y), all children have a good voice, have no sign of residual aspiration, but experience a slight exertional dyspnea. CONCLUSION: This limited experience on the endoscopic repair of extrathoracic LTEC shows that a minimally invasive approach sparing the need for postoperative intubation or tracheotomy is feasible and safe if modern technology (ultrapulse CO2 laser, endoscopic suturing, and postoperative use of CPAP in the intensive care unit) is available.
Resumo:
Tässä diplomityössä käsitellään erikoispumppujen korjausprosessia teollisuuspumppujen korjauksiin erikoistuneessa konepajassa. Työn pääasiallinen tarkoitus on tuotantoprosessin kehittäminen ja tuotantovaiheiden esitteleminen. Tavoitteen taustalla on pyrkimys entisestään parantaa palvelukykyä ja asiakastyytyväisyyttä.Kolme eri keinoa päätavoitteen saavuttamiseksi ovat tuotannon suunnittelun ja ohjauksen kehittäminen, työssä käsiteltyjen pumpputyyppien korjausprosessien läpäisyaikojen lyhentäminen sekä korjausvaiheiden määrittely ja esittely vaihe vaiheelta. Työssä käsiteltyjä erikoispumpputyyppejä ovat imupumput, monijaksopumput sekä pysty/potkuripumput.Tuotannonsuunnittelun ja -ohjauksen kehittämiseksi sekä läpäisyaikojen lyhentämiseksi työssä etsittiin vaihtoehtoisia toimintatapoja. Kolmas tavoite, eli korjausvaiheiden määrittely, toteutettiin esittelemällä korjausprosessin vaiheet käsitellyillä pumpputyypeillä.Tuloksena saatiin keinoja tuotannon suunnittelun ja hallinnan kehittämiseksi. Useimmat keinot koskevat toimintatapojen selkiyttämistä. Myös keinoja läpäisyaikojen lyhentämiseksi löydettiin. Tietyllä imupumpputyypillä ja -koolla läpäisyajan lyheneminen oli 25 % ja osalla monijaksopumpuista jopa 75 %. Tulokset saavutetaan varastoimalla tiettyjä komponentteja, joilla on pitkä valmistus- tai korjausaika. Pysty/potkuripumppujen korjauksen läpäisyaikaa ei saatu lyhennettyä työn rajausten puitteissa Näiden tulosten lisäksi korjausprosessin toimintatavat määriteltiin.
Resumo:
Secondary structure-forming DNA sequences such as CAG repeats interfere with replication and repair, provoking fork stalling, chromosome fragility, and recombination. In budding yeast, we found that expanded CAG repeats are more likely than unexpanded repeats to localize to the nuclear periphery. This positioning is transient, occurs in late S phase, requires replication, and is associated with decreased subnuclear mobility of the locus. In contrast to persistent double-stranded breaks, expanded CAG repeats at the nuclear envelope associate with pores but not with the inner nuclear membrane protein Mps3. Relocation requires Nup84 and the Slx5/8 SUMO-dependent ubiquitin ligase but not Rad51, Mec1, or Tel1. Importantly, the presence of the Nup84 pore subcomplex and Slx5/8 suppresses CAG repeat fragility and instability. Repeat instability in nup84, slx5, or slx8 mutant cells arises through aberrant homologous recombination and is distinct from instability arising from the loss of ligase 4-dependent end-joining. Genetic and physical analysis of Rad52 sumoylation and binding at the CAG tract suggests that Slx5/8 targets sumoylated Rad52 for degradation at the pore to facilitate recovery from acute replication stress by promoting replication fork restart. We thereby confirmed that the relocation of damage to nuclear pores plays an important role in a naturally occurring repair process.