786 resultados para Data mining models


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In molecular biology, it is often desirable to find common properties in large numbers of drug candidates. One family of methods stems from the data mining community, where algorithms to find frequent graphs have received increasing attention over the past years. However, the computational complexity of the underlying problem and the large amount of data to be explored essentially render sequential algorithms useless. In this paper, we present a distributed approach to the frequent subgraph mining problem to discover interesting patterns in molecular compounds. This problem is characterized by a highly irregular search tree, whereby no reliable workload prediction is available. We describe the three main aspects of the proposed distributed algorithm, namely, a dynamic partitioning of the search space, a distribution process based on a peer-to-peer communication framework, and a novel receiverinitiated load balancing algorithm. The effectiveness of the distributed method has been evaluated on the well-known National Cancer Institute’s HIV-screening data set, where we were able to show close-to linear speedup in a network of workstations. The proposed approach also allows for dynamic resource aggregation in a non dedicated computational environment. These features make it suitable for large-scale, multi-domain, heterogeneous environments, such as computational grids.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recently, two approaches have been introduced that distribute the molecular fragment mining problem. The first approach applies a master/worker topology, the second approach, a completely distributed peer-to-peer system, solves the scalability problem due to the bottleneck at the master node. However, in many real world scenarios the participating computing nodes cannot communicate directly due to administrative policies such as security restrictions. Thus, potential computing power is not accessible to accelerate the mining run. To solve this shortcoming, this work introduces a hierarchical topology of computing resources, which distributes the management over several levels and adapts to the natural structure of those multi-domain architectures. The most important aspect is the load balancing scheme, which has been designed and optimized for the hierarchical structure. The approach allows dynamic aggregation of heterogenous computing resources and is applied to wide area network scenarios.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In real world applications sequential algorithms of data mining and data exploration are often unsuitable for datasets with enormous size, high-dimensionality and complex data structure. Grid computing promises unprecedented opportunities for unlimited computing and storage resources. In this context there is the necessity to develop high performance distributed data mining algorithms. However, the computational complexity of the problem and the large amount of data to be explored often make the design of large scale applications particularly challenging. In this paper we present the first distributed formulation of a frequent subgraph mining algorithm for discriminative fragments of molecular compounds. Two distributed approaches have been developed and compared on the well known National Cancer Institute’s HIV-screening dataset. We present experimental results on a small-scale computing environment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In a world of almost permanent and rapidly increasing electronic data availability, techniques of filtering, compressing, and interpreting this data to transform it into valuable and easily comprehensible information is of utmost importance. One key topic in this area is the capability to deduce future system behavior from a given data input. This book brings together for the first time the complete theory of data-based neurofuzzy modelling and the linguistic attributes of fuzzy logic in a single cohesive mathematical framework. After introducing the basic theory of data-based modelling, new concepts including extended additive and multiplicative submodels are developed and their extensions to state estimation and data fusion are derived. All these algorithms are illustrated with benchmark and real-life examples to demonstrate their efficiency. Chris Harris and his group have carried out pioneering work which has tied together the fields of neural networks and linguistic rule-based algortihms. This book is aimed at researchers and scientists in time series modeling, empirical data modeling, knowledge discovery, data mining, and data fusion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Accurate replication of the processes associated with the energetics of the tropical ocean is necessary if coupled GCMs are to simulate the physics of ENSO correctly, including the transfer of energy from the winds to the ocean thermocline and energy dissipation during the ENSO cycle. Here, we analyze ocean energetics in coupled GCMs in terms of two integral parameters describing net energy loss in the system using the approach recently proposed by Brown and Fedorov (J Clim 23:1563–1580, 2010a) and Fedorov (J Clim 20:1108–1117, 2007). These parameters are (1) the efficiency c of the conversion of wind power into the buoyancy power that controls the rate of change of the available potential energy (APE) in the ocean and (2) the e-folding rate a that characterizes the damping of APE by turbulent diffusion and other processes. Estimating these two parameters for coupled models reveals potential deficiencies (and large differences) in how state-of-the-art coupled GCMs reproduce the ocean energetics as compared to ocean-only models and data assimilating models. The majority of the coupled models we analyzed show a lower efficiency (values of c in the range of 10–50% versus 50–60% for ocean-only simulations or reanalysis) and a relatively strong energy damping (values of a-1 in the range 0.4–1 years versus 0.9–1.2 years). These differences in the model energetics appear to reflect differences in the simulated thermal structure of the tropical ocean, the structure of ocean equatorial currents, and deficiencies in the way coupled models simulate ENSO.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aircraft Maintenance, Repair and Overhaul (MRO) feedback commonly includes an engineer’s complex text-based inspection report. Capturing and normalizing the content of these textual descriptions is vital to cost and quality benchmarking, and provides information to facilitate continuous improvement of MRO process and analytics. As data analysis and mining tools requires highly normalized data, raw textual data is inadequate. This paper offers a textual-mining solution to efficiently analyse bulk textual feedback data. Despite replacement of the same parts and/or sub-parts, the actual service cost for the same repair is often distinctly different from similar previously jobs. Regular expression algorithms were incorporated with an aircraft MRO glossary dictionary in order to help provide additional information concerning the reason for cost variation. Professional terms and conventions were included within the dictionary to avoid ambiguity and improve the outcome of the result. Testing results show that most descriptive inspection reports can be appropriately interpreted, allowing extraction of highly normalized data. This additional normalized data strongly supports data analysis and data mining, whilst also increasing the accuracy of future quotation costing. This solution has been effectively used by a large aircraft MRO agency with positive results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Advances in hardware and software in the past decade allow to capture, record and process fast data streams at a large scale. The research area of data stream mining has emerged as a consequence from these advances in order to cope with the real time analysis of potentially large and changing data streams. Examples of data streams include Google searches, credit card transactions, telemetric data and data of continuous chemical production processes. In some cases the data can be processed in batches by traditional data mining approaches. However, in some applications it is required to analyse the data in real time as soon as it is being captured. Such cases are for example if the data stream is infinite, fast changing, or simply too large in size to be stored. One of the most important data mining techniques on data streams is classification. This involves training the classifier on the data stream in real time and adapting it to concept drifts. Most data stream classifiers are based on decision trees. However, it is well known in the data mining community that there is no single optimal algorithm. An algorithm may work well on one or several datasets but badly on others. This paper introduces eRules, a new rule based adaptive classifier for data streams, based on an evolving set of Rules. eRules induces a set of rules that is constantly evaluated and adapted to changes in the data stream by adding new and removing old rules. It is different from the more popular decision tree based classifiers as it tends to leave data instances rather unclassified than forcing a classification that could be wrong. The ongoing development of eRules aims to improve its accuracy further through dynamic parameter setting which will also address the problem of changing feature domain values.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Global communicationrequirements andloadimbalanceof someparalleldataminingalgorithms arethe major obstacles to exploitthe computational power of large-scale systems. This work investigates how non-uniform data distributions can be exploited to remove the global communication requirement and to reduce the communication costin parallel data mining algorithms and, in particular, in the k-means algorithm for cluster analysis. In the straightforward parallel formulation of the k-means algorithm, data and computation loads are uniformly distributed over the processing nodes. This approach has excellent load balancing characteristics that may suggest it could scale up to large and extreme-scale parallel computing systems. However, at each iteration step the algorithm requires a global reduction operationwhichhinders thescalabilityoftheapproach.Thisworkstudiesadifferentparallelformulation of the algorithm where the requirement of global communication is removed, while maintaining the same deterministic nature ofthe centralised algorithm. The proposed approach exploits a non-uniform data distribution which can be either found in real-world distributed applications or can be induced by means ofmulti-dimensional binary searchtrees. The approachcanalso be extended to accommodate an approximation error which allows a further reduction ofthe communication costs. The effectiveness of the exact and approximate methods has been tested in a parallel computing system with 64 processors and in simulations with 1024 processing element

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Twitter is both a micro-blogging service and a platform for public conversation. Direct conversation is facilitated in Twitter through the use of @’s (mentions) and replies. While the conversational element of Twitter is of particular interest to the marketing sector, relatively few data-mining studies have focused on this area. We analyse conversations associated with reciprocated mentions that take place in a data-set consisting of approximately 4 million tweets collected over a period of 28 days that contain at least one mention. We ignore tweet content and instead use the mention network structure and its dynamical properties to identify and characterise Twitter conversations between pairs of users and within larger groups. We consider conversational balance, meaning the fraction of content contributed by each party. The goal of this work is to draw out some of the mechanisms driving conversation in Twitter, with the potential aim of developing conversational models.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Classical regression methods take vectors as covariates and estimate the corresponding vectors of regression parameters. When addressing regression problems on covariates of more complex form such as multi-dimensional arrays (i.e. tensors), traditional computational models can be severely compromised by ultrahigh dimensionality as well as complex structure. By exploiting the special structure of tensor covariates, the tensor regression model provides a promising solution to reduce the model’s dimensionality to a manageable level, thus leading to efficient estimation. Most of the existing tensor-based methods independently estimate each individual regression problem based on tensor decomposition which allows the simultaneous projections of an input tensor to more than one direction along each mode. As a matter of fact, multi-dimensional data are collected under the same or very similar conditions, so that data share some common latent components but can also have their own independent parameters for each regression task. Therefore, it is beneficial to analyse regression parameters among all the regressions in a linked way. In this paper, we propose a tensor regression model based on Tucker Decomposition, which identifies not only the common components of parameters across all the regression tasks, but also independent factors contributing to each particular regression task simultaneously. Under this paradigm, the number of independent parameters along each mode is constrained by a sparsity-preserving regulariser. Linked multiway parameter analysis and sparsity modeling further reduce the total number of parameters, with lower memory cost than their tensor-based counterparts. The effectiveness of the new method is demonstrated on real data sets.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An important application of Big Data Analytics is the real-time analysis of streaming data. Streaming data imposes unique challenges to data mining algorithms, such as concept drifts, the need to analyse the data on the fly due to unbounded data streams and scalable algorithms due to potentially high throughput of data. Real-time classification algorithms that are adaptive to concept drifts and fast exist, however, most approaches are not naturally parallel and are thus limited in their scalability. This paper presents work on the Micro-Cluster Nearest Neighbour (MC-NN) classifier. MC-NN is based on an adaptive statistical data summary based on Micro-Clusters. MC-NN is very fast and adaptive to concept drift whilst maintaining the parallel properties of the base KNN classifier. Also MC-NN is competitive compared with existing data stream classifiers in terms of accuracy and speed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Most multidimensional projection techniques rely on distance (dissimilarity) information between data instances to embed high-dimensional data into a visual space. When data are endowed with Cartesian coordinates, an extra computational effort is necessary to compute the needed distances, making multidimensional projection prohibitive in applications dealing with interactivity and massive data. The novel multidimensional projection technique proposed in this work, called Part-Linear Multidimensional Projection (PLMP), has been tailored to handle multivariate data represented in Cartesian high-dimensional spaces, requiring only distance information between pairs of representative samples. This characteristic renders PLMP faster than previous methods when processing large data sets while still being competitive in terms of precision. Moreover, knowing the range of variation for data instances in the high-dimensional space, we can make PLMP a truly streaming data projection technique, a trait absent in previous methods.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, the generalized log-gamma regression model is modified to allow the possibility that long-term survivors may be present in the data. This modification leads to a generalized log-gamma regression model with a cure rate, encompassing, as special cases, the log-exponential, log-Weibull and log-normal regression models with a cure rate typically used to model such data. The models attempt to simultaneously estimate the effects of explanatory variables on the timing acceleration/deceleration of a given event and the surviving fraction, that is, the proportion of the population for which the event never occurs. The normal curvatures of local influence are derived under some usual perturbation schemes and two martingale-type residuals are proposed to assess departures from the generalized log-gamma error assumption as well as to detect outlying observations. Finally, a data set from the medical area is analyzed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Data mining is a relatively new field of research that its objective is to acquire knowledge from large amounts of data. In medical and health care areas, due to regulations and due to the availability of computers, a large amount of data is becoming available [27]. On the one hand, practitioners are expected to use all this data in their work but, at the same time, such a large amount of data cannot be processed by humans in a short time to make diagnosis, prognosis and treatment schedules. A major objective of this thesis is to evaluate data mining tools in medical and health care applications to develop a tool that can help make rather accurate decisions. In this thesis, the goal is finding a pattern among patients who got pneumonia by clustering of lab data values which have been recorded every day. By this pattern we can generalize it to the patients who did not have been diagnosed by this disease whose lab values shows the same trend as pneumonia patients does. There are 10 tables which have been extracted from a big data base of a hospital in Jena for my work .In ICU (intensive care unit), COPRA system which is a patient management system has been used. All the tables and data stored in German Language database.