925 resultados para DROP-OUTS
Resumo:
The electrochemical behaviour of the pesticide metam (MT) at a glassy carbon working electrode (GCE) and at a hanging mercury drop electrode (HMDE) was investigated. Different voltammetric techniques, including cyclic voltammetry (CV) and square wave voltammetry (SWV), were used. An anodic peak (independent of pH) at +1.46 V vs AgCl/Ag was observed in MTaqueous solution using the GCE. SWV calibration curves were plotted under optimized conditions (pH 2.5 and frequency 50 Hz), which showed a linear response for 17–29 mg L−1. Electrochemical reduction was also explored, using the HMDE. A well defined cathodic peak was recorded at −0.72 V vs AgCl/ Ag, dependent on pH. After optimizing the operating conditions (pH 10.1, frequency 150 Hz, potential deposition −0.20 V for 10 s), calibration curves was measured in the concentration range 2.5×10−1 to 1.0 mg L−1 using SWV. The electrochemical behaviour of this compound facilitated the development of a flow injection analysis (FIA) system with amperometric detection for the quantification of MT in commercial formulations and spiked water samples. An assessment of the optimal FIA conditions indicated that the best analytical results were obtained at a potential of +1.30 V, an injection volume of 207 μL and an overall flow rate of 2.4 ml min−1. Real samples were analysed via calibration curves over the concentration range 1.3×10−2 to 1.3 mg L−1. Recoveries from the real samples (spiked waters and commercial formulations) were between 97.4 and 105.5%. The precision of the proposed method was evaluated by assessing the relative standard deviation (RSD %) of ten consecutive determinations of one sample (1.0 mg L−1), and the value obtained was 1.5%.
Resumo:
In order to combat a variety of pests, pesticides are widely used in fruits. Several extraction procedures (liquid extraction, single drop microextraction, microwave-assisted extraction, pressurized liquid extraction, supercritical fluid extraction, solid-phase extraction, solid-phase microextraction, matrix solid-phase dispersion, and stir bar sorptive extraction) have been reported to determine pesticide residues in fruits and fruit juices. The significant change in recent years is the introduction of the Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) methods in these matrices analysis. A combination of techniques reported the use of new extraction methods and chromatography to provide better quantitative recoveries at low levels. The use of mass spectrometric detectors in combination with liquid and gas chromatography has played a vital role to solve many problems related to food safety. The main attention in this review is on the achievements that have been possible because of the progress in extraction methods and the latest advances and novelties in mass spectrometry, and how these progresses have influenced the best control of food, allowing for an increase in the food safety and quality standards.
Resumo:
A detailed study of voltammetric behavior of ethiofencarb (ETF) is reported using glassy carbon electrode (GCE) and hanging mercury drop electrode (HMDE). With GCE, it is possible to verify that the oxidative mechanism is irreversible, independent of pH, and the maximum intensity current was observed at +1.20 V vs. AgCl/Ag at pH 1.9. A linear calibration line was obtained from 1.0x10-4 to 8.0x10-4 mol L-1 with SWV method. To complete the electrochemical knowledge of ETF pesticide, the reduction was also explored with HMDE. A well-defined peak was observed at –1.00V vs. AgCl/Ag in a large range of pH with higher signal at pH 7.0. Linearity was obtained in 4.2x10-6 and 9.4x10-6 mol L-1 ETF concentration range. An immediate alkaline hydrolysis of ETF was executed, producing a phenolic compound (2-ethylthiomethylphenol) (EMP), and the electrochemical activity of the product was examined. It was deduced that it is oxidized on GCE at +0.75V vs. AgCl/Ag with a maximum peak intensity current at pH 3.2, but the compound had no reduction activity on HMDE. Using the decrease of potential peak, a flow injection analysis (FIA) system was developed connected to an amperometric detector, enabling the determination of EMP over concentration range of 1.0x10-7 and 1.0x10-5 mol L-1 at a sampling rate of 60 h-1. The results provided by FIA methodology were performed by comparison with results from high-performance liquid chromatography (HPLC) technique and demonstrated good agreement with relative deviations lower than 4%. Recovery trials were performed and the obtained values were between 98 and 104%.
Resumo:
An electrochemical method is proposed for the determination of maltol in food. Microwave-assisted extraction procedures were developed to assist sample pre-treating steps. Experiments carried out in cyclic voltammetry showed an irreversible and adsorption controlled reduction of maltol. A cathodic peak was observed at -1.0 V for a Hanging Mercury Drop Electrode versus an AgCl/Ag (in saturated KCl), and the peak potential was pH independent. Square wave voltammetric procedures were selected to plot calibration curves. These procedures were carried out with the optimum conditions: pH 6.5; frequency 50 Hz; deposition potential 0.6 V; and deposition time 10 s. A linear behaviour was observed within 5.0 × 10-8 and 3.5 × 10-7 M. The proposed method was applied to the analysis of cakes, and results were compared with those obtained by an independent method. The voltammetric procedure was proven suitable for the analysis of cakes and provided environmental and economical advantages, including reduced toxicity and volume of effluents and decreased consumption of reagents.
Resumo:
Relatório da Prática Profissional Supervisionada Mestrado em Educação Pré-Escolar
Resumo:
Dissertação de Natureza Científica para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Hidráulica
Resumo:
This paper presents a computational tool (PHEx) developed in Excel VBA for solving sizing and rating design problems involving Chevron type plate heat exchangers (PHE) with 1-pass-1-pass configuration. The rating methodology procedure used in the program is outlined, and a case study is presented with the purpose to show how the program can be used to develop sensitivity analysis to several dimensional parameters of PHE and to observe their effect on transferred heat and pressure drop.
Resumo:
Between 2000/01 and 2006/07, the approval rate of a Thermodynamics course in a Mechanical Engineer graduation was 25%. However, a careful analysis of the results showed that 41% of the students chosen not to attend or dropped out, missing the final examination. Thus, a continuous assessment methodology was developed, whose purpose was to reduce drop out, motivating students to attend this course, believing that what was observed was due, not to the incapacity to pass, but to the anticipation of the inevitability of failure by the students. If, on one hand, motivation is defined as a broad construct pertaining to the conditions and processes that account for the arousal, direction, magnitude, and maintenance of effort, on the other hand, assessment is one of the most powerful tools to change the will that students have to learn, motivating them to learn in a quicker and permanent way. Some of the practices that were implemented, included: promoting learning goal orientation rather than performance goal orientation; cultivating intrinsic interest in the subject and put less emphasis on grades but make grading criteria explicit; emphasizing teaching approaches that encourage collaboration among students and cater for a range of teaching styles; explaining the reasons for, and the implications of, tests; providing feedback to students about their performance in a form that is non-egoinvolving and non-judgemental and helping students to interpret it; broadening the range of information used in assessing the attainment of individual students. The continuous assessment methodology developed was applied in 2007/08 and 2008/09, having found an increase in the approval from 25% to 55% (30%), accompanied by a decrease of the drop out from 41% to 23,5% (17,5%). Flunking with a numerical grade lowered from 34,4% to 22,0% (12,4%). The perception by the students of the continuous assessment relevance was evaluated with a questionnaire. 70% of the students that failed the course respond that, nevertheless, didn’t repent having done the continuous assessment.
Resumo:
The behavior of tandem pin heterojunctions based on a-SiC: H alloys is investigated under different optical and electrical bias conditions. The devices are optimized to act as optically selective wavelength filters. Depending on the device configuration (optical gaps, thickness, sequence of cells in the stack structure) and on the applied voltage (positive or negative) and optical bias (wavelength, intensity, frequency) it is possible to combine the wavelength discrimination function with the self amplification of the signal. This wavelength nonlinearity allows the amplification or the rejection of a weak signal-impulse. The device works as an active tunable optical filter for wavelength selection and can be used as an add/drop multiplexer (ADM) which enables data to enter and leave an optical network bit stream without having to demultiplex the stream. Results show that, even under weak transient input signals, the background wavelength controls the output signal. This nonlinearity, due to the transient asymmetrical light penetration of the input channels across the device together with the modification on the electrical field profile due to the optical bias, allows tuning an input channel without demultiplexing the stream. This high optical nonlinearity makes the optimized devices attractive for the amplification of all optical signals. Transfer characteristics effects due to changes in steady state light, control d.c. voltage and applied light pulses are presented. Based on the experimental results and device configuration an optoelectronic model is developed. The transfer characteristics effects due to changes in steady state light, dc control voltage or applied light pulses are simulated and compared with the experimental data. A good agreement was achieved.
Resumo:
New sensory materials based on p-phenylene ethynylene trimers integrating calix[4]arene receptors (CALIX-PET) and tert-butylphenol (TBP-PET) moieties have been synthesized and their sensitivity and selectivity for the detection of nitroaromatic compounds (NACs) such as nitrobenzene (NB), 2,4-dinitrotoluene (2,4-DNT), 2,4,6-trinitrotoluene (TNT) and picric acid (PA) investigated in fluid phase and solid-state. It was found that both fluorophores displayed high sensitivities toward NACs detection in solution as evaluated by the Stern-Volmer formalism. For all the tested explosives, the ratio of fluorescence intensities (F-0/F) is a linear function of the quencher concentration only after appropriate correction of fluorescence quenching data for inner-filter effects. The quenching efficiencies for CALIX-PET and TBP-PET follow the order PA >> TNT > DNT > NB, which correlate well with the quenchers electron affinities as evaluated from their LUMOs energies thereby suggesting a photoinduced electron transfer as the dominant mechanism of fluorescence quenching. The selectivity of these sensors was checked against exemplar interferents possessing differentiated electronic properties (benzoic acid, 2,4-dichlorophenol and benzoquinone) and reduced quenching activity was detected. The quenching efficiencies and response times of the two fluorophores in the solid-state toward NB, 2,4-DNT and TNT vapors were evaluated through steady-state fluorescence quenching experiments with the materials dispersed in polymeric matrices or as neat films. The most significant fluorescence quenching responses were achieved for drop-casted films of TBP-PET upon exposure to nitroaromatics.
Resumo:
We directly visualize the response of nematic liquid crystal drops of toroidal topology threaded in cellulosic fibers, suspended in air, to an AC electric field and at different temperatures over the N-I transition. This new liquid crystal system can exhibit non-trivial point defects, which can be energetically unstable against expanding into ring defects depending on the fiber constraining geometries. The director anchoring tangentially near the fiber surface and homeotropically at the air interface makes a hybrid shell distribution that in turn causes a ring disclination line around the main axis of the fiber at the center of the droplet. Upon application of an electric field, E, the disclination ring first expands and moves along the fiber main axis, followed by the appearance of a stable "spherical particle" object orbiting around the fiber at the center of the liquid crystal drop. The rotation speed of this particle was found to vary linearly with the applied voltage. This constrained liquid crystal geometry seems to meet the essential requirements in which soliton-like deformations can develop and exhibit stable orbiting in three dimensions upon application of an external electric field. On changing the temperature the system remains stable and allows the study of the defect evolution near the nematic-isotropic transition, showing qualitatively different behaviour on cooling and heating processes. The necklaces of such liquid crystal drops constitute excellent systems for the study of topological defects and their evolution and open new perspectives for application in microelectronics and photonics.
Resumo:
Volatile organic compounds are a common source of groundwater contamination that can be easily removed by air stripping in columns with random packing and using a counter-current flow between the phases. This work proposes a new methodology for the column design for any particular type of packing and contaminant avoiding the necessity of a pre-defined diameter used in the classical approach. It also renders unnecessary the employment of the graphical Eckert generalized correlation for pressure drop estimates. The hydraulic features are previously chosen as a project criterion and only afterwards the mass transfer phenomena are incorporated, in opposition to conventional approach. The design procedure was translated into a convenient algorithm using C++ as programming language. A column was built in order to test the models used either in the design or in the simulation of the column performance. The experiments were fulfilled using a solution of chloroform in distilled water. Another model was built to simulate the operational performance of the column, both in steady state and in transient conditions. It consists in a system of two partial non linear differential equations (distributed parameters). Nevertheless, when flows are steady, the system became linear, although there is not an evident solution in analytical terms. In steady state the resulting system of ODE can be solved, allowing for the calculation of the concentration profile in both phases inside the column. In transient state the system of PDE was numerically solved by finite differences, after a previous linearization.
Resumo:
STRIPPING is a software application developed for the automatic design of a randomly packing column where the transfer of volatile organic compounds (VOCs) from water to air can be performed and to simulate it’s behaviour in a steady-state. This software completely purges any need of experimental work for the selection of diameter of the column, and allows a choice, a priori, of the most convenient hydraulic regime for this type of operation. It also allows the operator to choose the model used for the calculation of some parameters, namely between the Eckert/Robbins model and the Billet model for estimating the pressure drop of the gaseous phase, and between the Billet and Onda/Djebbar’s models for the mass transfer. Illustrations of the graphical interface offered are presented.
Resumo:
Volatile organic compounds are a common source of groundwater contamination that can be easily removed by air stripping in columns with random packing and using a counter-current flow between the phases. This work proposes a new methodology for column design for any type of packing and contaminant which avoids the necessity of an arbitrary chosen diameter. It also avoids the employment of the usual graphical Eckert correlations for pressure drop. The hydraulic features are previously chosen as a project criterion. The design procedure was translated into a convenient algorithm in C++ language. A column was built in order to test the design, the theoretical steady-state and dynamic behaviour. The experiments were conducted using a solution of chloroform in distilled water. The results allowed for a correction in the theoretical global mass transfer coefficient previously estimated by the Onda correlations, which depend on several parameters that are not easy to control in experiments. For best describe the column behaviour in stationary and dynamic conditions, an original mathematical model was developed. It consists in a system of two partial non linear differential equations (distributed parameters). Nevertheless, when flows are steady, the system became linear, although there is not an evident solution in analytical terms. In steady state the resulting ODE can be solved by analytical methods, and in dynamic state the discretization of the PDE by finite differences allows for the overcoming of this difficulty. To estimate the contaminant concentrations in both phases in the column, a numerical algorithm was used. The high number of resulting algebraic equations and the impossibility of generating a recursive procedure did not allow the construction of a generalized programme. But an iterative procedure developed in an electronic worksheet allowed for the simulation. The solution is stable only for similar discretizations values. If different values for time/space discretization parameters are used, the solution easily becomes unstable. The system dynamic behaviour was simulated for the common liquid phase perturbations: step, impulse, rectangular pulse and sinusoidal. The final results do not configure strange or non-predictable behaviours.
Resumo:
Dynamic and distributed environments are hard to model since they suffer from unexpected changes, incomplete knowledge, and conflicting perspectives and, thus, call for appropriate knowledge representation and reasoning (KRR) systems. Such KRR systems must handle sets of dynamic beliefs, be sensitive to communicated and perceived changes in the environment and, consequently, may have to drop current beliefs in face of new findings or disregard any new data that conflicts with stronger convictions held by the system. Not only do they need to represent and reason with beliefs, but also they must perform belief revision to maintain the overall consistency of the knowledge base. One way of developing such systems is to use reason maintenance systems (RMS). In this paper we provide an overview of the most representative types of RMS, which are also known as truth maintenance systems (TMS), which are computational instances of the foundations-based theory of belief revision. An RMS module works together with a problem solver. The latter feeds the RMS with assumptions (core beliefs) and conclusions (derived beliefs), which are accompanied by their respective foundations. The role of the RMS module is to store the beliefs, associate with each belief (core or derived belief) the corresponding set of supporting foundations and maintain the consistency of the overall reasoning by keeping, for each represented belief, the current supporting justifications. Two major approaches are used to reason maintenance: single-and multiple-context reasoning systems. Although in the single-context systems, each belief is associated to the beliefs that directly generated it—the justification-based TMS (JTMS) or the logic-based TMS (LTMS), in the multiple context counterparts, each belief is associated with the minimal set of assumptions from which it can be inferred—the assumption-based TMS (ATMS) or the multiple belief reasoner (MBR).