986 resultados para DOG KIDNEY-CELLS
Resumo:
Toxoplasmosis and leishmaniasis are two worldwide zoonoses caused by the protozoan parasites Toxoplasma gondii and Leishmania spp., respectively. This report describes the clinical and laboratorial findings of a co-infection with both parasites in a 4-year-old female dog suspected of ehrlichiosis that presented anemia, thrombocytopenia, hypoalbuminemia, hyperglobulinemia, tachyzoite-like structures to the lung imprints, and polymerase chain reaction (PCR) results positive for T. gondii (kidney, lung, and liver) and Leishmania spp. Co-infection with Toxoplasma gondii and Leishmania braziliensis was confirmed by sequencing; restriction fragment length polymorphism-polymerase chain reaction (RFLP-PCR) confirmed an atypical T. gondii genotype circulating in dogs that has been reported to cause human congenital toxoplasmosis.
Resumo:
Immunosuppressive drugs are used to suppress immune system activity in transplant patients and reduce the risk of organ rejection. The present study evaluated the potential cytotoxic, genotoxic and mutagenic of the immunosuppressive drugs cyclosporine (CsA) and tacrolimus (FK-506) on normal human fibroblasts (MRC-5 cells). Based on plasma concentrations of the immunosuppressive drugs, which were obtained from the records of kidney transplant patients at the Kidney Institute of Londrina, Brazil, 11 concentrations of each immunosuppressive were chosen to evaluate cell viability using the MIT assay. From these results, CsA and FK-506 concentrations of 135, 300, 675, and 1520 ng/ml and 8, 16, 24, and 32 ng/ml, respectively, were evaluated using (i) the comet assay, (ii) the nuclear division index (NDI), (iii) the micronucleus test (CBMN) and (iv) cell proliferation curves generated by quantifying cell numbers and protein levels. In this study, 1520 to 3420 ng/ml CsA decreased cell viability after 48 h of exposure. Genotoxic effects were observed only with a concentration of 1520 ng/ml after 3 h of exposure and with concentrations of 675 and 1520 ng/ml after 24 h of exposure. Mutagenic effects were observed only for the concentration of 1520 ng/ml. FK-506 decreased cell viability after 72 h of exposure for concentrations up to 20 ng/ml; genotoxic effects were observed with concentrations up to 8 ng/ml for both treatment times (3 and 24 h) and mutagenic effects were observed with concentrations of 24 and 32 ng/ml after 24 h of treatment. The cell proliferation curves demonstrated the absence of cytostatic effects of these drugs, and these data were confirmed by the NDI analysis. Our results suggest that concentrations lower than 300 ng/ml of CsA and 16 ng/ml of FK-506 are safe for use, as they did not induce genotoxic and mutagenic damage or affect MRC-5 cell viability and proliferation. (C) 2014 Elsevier GmbH. All rights reserved.
Resumo:
The canis lupus familiares is the only species besides human that spontaneously develop prostatic carcinoma (PCa). In addition, the metastatic sites are similar to those frequently reported in men. For these reasons, the dog is the best natural model to study the molecular mechanisms in PCa development providing a natural animal model for treatment by molecular targets. Previously, we investigated copy number alterations by arrayCGH (Canine Genome CGH Microarray 4x44K-G2519F, Agilent Technologies) in canine prostatic lesions: 3 benign prostatic hyperplasias (BPH), 4 proliferative inflammatory atrophies (PIA), and 14 PCa. Five histologically normal prostatic tissues were used as reference. Genomic alterations were evaluated using Genomic Workbench Standard Edition 5.0.14. This previous study revealed significant copy number losses of Atm and Pten exclusively in PCa. In the present study, ATM and PTEN immunoexpression were investigated using a tissue microarray (TMA) containing 149 canine prostatic paraffin-embedded lesions (BPH, PIA and PCa) collected from 67 animals. Immunohistochemical reactions were performed using the polyclonal rabbit antibody anti-PTEN (Santa Cruz Biotech, 1:50) and anti-ATM (Abcam, 1:50). The sections were developed with diaminobenzidine (DAB) and peroxidase. The immunohistochemical staining was assessed in each core by the distribution of positive cells for each antibody per lesion (score 1: <25% cells positive, 2: 26% to 50%, 3: being 51% and 75% and 4:> 75%) and intensity (1: weak, 2: moderate, 3: intense). Chi-square or Fisher exact test was used to determine the association between the categorical variables using GraphPad Prism 5 (GraphPad Software Inc., La Jolla, CA). Distribution of positive cells did not differ among lesions. PCa and PIA showed more samples with weak intensity for ATM when compared to normal prostatic tissue and BPH (PCa: p=0,032 and PIA: p=0,025). Benign prostatic hyperplasia and normal samples presented intense PTEN immunostaining than PCa (p=0,021) and PIA (p=0,0013). These results suggest that ATM and PTEN proteins expression in canine prostatic carcinoma are downregulated possibly by copy number losses. These findings are similar from those described in prostate carcinomas from human corroborating for the use of dogs as a natural model to study prostatic disease in men.
Resumo:
Background: Primary tongue tumors rarely affect dogs and correspond to 4% of tumors involving the oropharynx. Until now, primary tongue lymphoma had not been reported. However, lymphoma involvement in the skeletal muscle, although quite unusual, was described in the literature in four cases. Cutaneous lymphoma is another rare extranodal manifestation. The objective of this report is to describe a case of T immunophenotype lymphoma occurrence, whose manifestation is atypical, not only because it is situated in the tongue muscle but also because of the subsequent involvement of the striated musculature of the left forelimb and the skin, which showed unfavorable evolution. Case: A female seven-year-old mongrel was seen showing a regular lump in the base of the tongue, 3 cm in diameter, not ulcerated and of fi rm consistency, with halitosis as the only clinical sign of the disease. Incisional biopsy of the lump was performed and histopathology verifi ed that it was large cell lymphoma. The material was sent for immunohistochemical evaluation and was characterized as T immunophenotype lymphoma by positive CD3 and negative CD79a marking. The CHOP (cyclophosphamide, doxorubicin, vincristine and prednisone) chemotherapy protocol was established as treatment and after the fi rst chemotherapy session there was partial remission of the mass, measuring 2 cm in diameter. The lump, however, remained stable in the following sessions. Thirty days after the diagnosis of lymphoma, the animal began to show lameness of the left forelimb and swelling near the head of the left humerus. A muscle mass, fi rm in consistency, progressing fast, presented a signifi cant increase, just three weeks after its appearance. Two skin lesions, arcuate, erythematous and pruritic also appeared in the dorsocervical and ventral-abdominal region. Incisional biopsy of these lesions was performed and the histopathological diagnosis confi rmed muscle and cutaneous large cell lymphoma and immunophenotype compatible with T cells (positive CD3 and negative CD79a). Due to disease advance, even during chemotherapy, a rescue protocol of L-asparaginase administration followed by lomustine and prednisone was proposed. Even with the rescue protocol there was no remission of the tumors and the case was classifi ed as progressive. The animal of this report died after completing the fi rst cycle of chemotherapy protocol, with a survival of 92 days. Discussion: Despite the fact that clinical behavior of primary lymphoma in dogs’ skeletal muscle is unknown, it is believed that, as in humans, it can be associated with chronic infl ammation or neoplastic cell invasion by proximity of the tumor or metastasis, which could justify the dissemination of the lymphoma reported here from the tongue to other tissues. However, appearance of concurrent independent lymphomas cannot be ruled out. As observed in the three cases of primary muscular lymphoma, the dog of this report had low response to therapy and short survival. This report presents the fi rst case of lymphoma in tongue with subsequent skin and left forelimb skeletal muscle involvement described in the literature. The clinical outcome corroborates the aggressiveness of muscular lymphoma observed in the other reports and also suggests that both tongue and other skeletal muscle tumors should be included in the differential diagnosis of canine lymphoma.
Resumo:
VEGF inhibition can promote renal vascular and parenchymal injury, causing proteinuria, hypertension and thrombotic microangiopathy. The mechanisms underlying these side effects are unclear. We investigated the renal effects of the administration, during 45 days, of sunitinib (Su), a VEGF receptor inhibitor, to rats with 5/6 renal ablation (Nx). Adult male Munich-Wistar rats were distributed among groups S+V, sham-operated rats receiving vehicle only; S+Su, S rats given Su, 4 mg/kg/day; Nx+V, Nx rats receiving V; and Nx+Su, Nx rats receiving Su. Su caused no change in Group S. Seven and 45 days after renal ablation, renal cortical interstitium was expanded, in association with rarefaction of peritubular capillaries. Su did not worsen hypertension, proteinuria or interstitial expansion, nor did it affect capillary rarefaction, suggesting little angiogenic activity in this model. Nx animals exhibited glomerulosclerosis (GS), which was aggravated by Su. This effect could not be explained by podocyte damage, nor could it be ascribed to tuft hypertrophy or hyperplasia. GS may have derived from organization of capillary microthrombi, frequently observed in Group Nx+Su. Treatment with Su did not reduce the fractional glomerular endothelial area, suggesting functional rather than structural cell injury. Chronic VEGF inhibition has little effect on normal rats, but can affect glomerular endothelium when renal damage is already present.
Resumo:
Duchenne muscular dystrophy (DMD), a lethal X-linked disorder, is the most common and severe form of muscular dystrophies, affecting I in 3,500 male births. Mutations in the DMD gene lead to the absence of muscle dystrophin and a progressive degeneration of skeletal muscle. The possibility to treat DMD through cell therapy has been widely investigated. We have previously shown that human adipose-derived stromal cells (hASCs) injected systemically in SJL mice are able to reach and engraft in the host muscle, express human muscle proteins, and ameliorate the functional performance of injected animals without any immunosuppression. However, before starting clinical trials in humans many questions still need to be addressed in preclinical studies, in particular in larger animal models, when available. The best animal model to address these questions is the golden retriever muscular dystrophy (GRMD) dog that reproduces the full spectrum of human DMD. Affected animals carry a mutation that predicts a premature termination codon in exon 8 and a peptide that is 5% the size of normal dystrophin. These dogs present clinical signs within the first weeks and most of them do not survive beyond age two. Here we show the results of local and intravenous injections of hASCs into GRMD dogs, without immunosuppression. We observed that hASCs injected systemically into the dog cephalic vein are able to reach, engraft, and express human dystrophin in the host GRMD dystrophic muscle up to 6 months after transplantation. Most importantly, we demonstrated that injecting a huge quantity of human mesenchymal cells in a large-animal model, without immunosuppression, is a safe procedure, which may have important applications for future therapy in patients with different forms of muscular dystrophies.
Resumo:
Lima S.A.F., Wodewotzky T.I., Lima-Neto J.F., Beltrao-Braga P.C.B. & Alvarenga F.C.L. 2012. [In vitro differentiation of mesenchimal stem cells of dogs into osteogenic precursors.] Diferenciacao in vitro de celulas-tronco mesenquimais da medula ossea de caes em precursores osteogenicos. Pesquisa Veterinaria Brasileira 32(5):463-469. Departamento de Reproducao Animal e Radiologia Veterinaria, Faculdade de Medicina Veterinaria e Zootecnia, Universidade Estadual Paulista, Campus de Botucatu, Distrito de Rubiao Junior s/n, Botucatu, SP 18618-970, Brazil. E-mail: silviavet@usp.br The aim of our research was to evaluate the potential for osteogenic differentiation of mesenchimal stem cells (MSC) obtained from dog bone marrow. The MSC were separated using the Ficoll method and cultured under two different conditions: DMEM low glucose or DMEM/F12, both containing L-glutamine, 20% of FBS and antibiotics. MSC markers were tested, confirming CD44+ and CD34- cells with flow cytometry. For osteogenic differentiation, cells were submitted to four different conditions: Group 1, same conditions used for primary cell culture with DMEM supplemented media; Group 2, same conditions of Group 1 plus differentiation inductors Dexametazone, ascorbic acid and beta-glicerolphosphate. Group 3, Cells cultured with supplemented DMEM/F12 media, and Group 4, same conditions as in Group 3 plus differentiation inductors Dexametazone, ascorbic acid and beta-glicerolphosphate. The cellular differentiation was confirmed using alizarin red and imunostaining with SP7/Osterix antibody. We observed by alizarin staining that calcium deposit was more evident in cells cultivated in DMEM/F12. Furthermore, by SP/7Osterix antibody immunostaining we obtained 1:6 positive cells when using DMEM/F12 compared with 1:12 for low-glucose DMEM. Based on our results, we conclude that the medium DMEM/F12 is more efficient for induction of differentiation of mesenchymal stem cells in canine osteogenic progenitors. This effect is probably due to the greater amount of glucose in the medium and the presence of various amino acids.
Resumo:
The umbilical cord blood (UCB) is an important source of hematopoietic stem cells with great deal of interest in regenerative medicine. The UCB cells have been extensively studied as an alternative to the bone marrow transplants. The challenge is to define specific methods to purify and characterize these cells in different animal species. This study is aimed at morphological characterization of progenitor cells derived from UCB highlighting relevant differences with peripheral blood of adult in dog and cats. Therefore, blood was collected from 18 dogs and 5 cats' umbilical cords from fetus in various developmental stages. The mononuclear cells were separated using the gradient of density Histopaque-1077. Characterization of CD34+ cells was performed by flow cytometric analysis and transmission electron microscopy. Granulocytes (ancestry of the basophiles, eosinophiles, and neutrophiles) and agranulocytes (represented by immature lymphocytes) were identified. We showed for the first time the ultrastructural features of cat UCB cells. Microsc. Res. Tech. 75:766770, 2012. (C) 2011 Wiley Periodicals, Inc.
Resumo:
IgA nephropathy (IgAN), the most common primary glomerulonephritis worldwide, has significant morbidity and mortality as 20-40% of patients progress to end-stage renal disease within 20 years of onset. In order to gain insight into the molecular mechanisms involved in the progression of IgAN, we systematically evaluated renal biopsies from such patients. This showed that the MAPK/ERK signaling pathway was activated in the mesangium of patients presenting with over 1 g/day proteinuria and elevated blood pressure, but absent in biopsy specimens of patients with IgAN and modest proteinuria (<1 g/day). ERK activation was not associated with elevated galactose-deficient IgA1 or IgG specific for galactose-deficient IgA1 in the serum. In human mesangial cells in vitro, ERK activation through mesangial IgA1 receptor (CD71) controlled pro-inflammatory cytokine secretion and was induced by large-molecular-mass IgA1-containing circulating immune complexes purified from patient sera. Moreover, IgA1-dependent ERK activation required renin-angiotensin system as its blockade was efficient in reducing proteinuria in those patients exhibiting substantial mesangial activation of ERK. Thus, ERK activation alters mesangial cell-podocyte crosstalk, leading to renal dysfunction in IgAN. Assessment of MAPK/ERK activation in diagnostic renal biopsies may predict the therapeutic efficacy of renin-angiotensin system blockers in IgAN. Kidney International (2012) 82, 1284-1296; doi:10.1038/ki.2012.192; published online 5 September 2012
Resumo:
Background. Nuclear factor kappa B (NF kappa B) plays a potential role in tolerance by orchestrating onset and resolution of inflammation and regulatory T cell differentiation through subunit c-Rel. We characterized cellular infiltrates and expression of NF kappa B1, c-Rel and its upstream regulators phosphatidylinositol 3-kinase/RAC-alpha serine/threonine kinase, in allograft biopsies from patients with spontaneous clinical operational tolerance (COT). Methods. Paraffin-fixed kidney allograft biopsies from 40 patients with COT (n=4), interstitial rejection (IR; n=12), borderline changes (BC; n=12), and long-term allograft function without rejection (NR; n=12) were used in the study. Cellular infiltrates and immunohistochemical expression of key proteins of the NF kappa B pathway were evaluated in the cortical tubulointerstitium and in cellular infiltrates using digital image analysis software. Results were given as mean +/- SEM. Results. Biopsies from patients with COT exhibited a comparable amount of cellular infiltrate to IR, BC, and NR (COT, 191 +/- 81; IR, 291 +/- 62; BC, 178 +/- 45; and NR, 210 +/- 42 cells/mm(2)) but a significantly higher proportion of forkhead box P3-positive cells (COT, 11%+/- 1.7%; IR, 3.5%+/- 0.70%; BC, 3.4%+/- 0.57%; and NR, 3.7%+/- 0.78% of infiltrating cells; P=0.02). c-Rel expression in cellular infiltrates was significantly elevated in IR, BC, and NR when analyzing the number of positive cells per mm(2) (P=0.02) and positive cells per infiltrating cells (P=0.04). In contrast, tubular PI3K and c-Rel expression were significantly higher in IR and BC but not in NR compared with COT (P=0.03 and P=0.006, respectively). With RAC-alpha serine-threonine kinase, similar tendencies were observed (P=0.2). Conclusions. Allografts from COT patients show significant cellular infiltrates but a distinct expression of proteins involved in the NF kappa B pathway and a higher proportion of forkhead box P3-positive cells.
Resumo:
Ferrao FM, Lara LS, Axelband F, Dias J, Carmona AK, Reis RI, Costa-Neto CM, Vieyra A, Lowe J. Exposure of luminal membranes of LLC-PK1 cells to ANG II induces dimerization of AT(1)/AT(2) receptors to activate SERCA and to promote Ca2+ mobilization. Am J Physiol Renal Physiol 302: F875-F883, 2012. First published January 4, 2012; doi:10.1152/ajprenal.00381.2011.-ANG II is secreted into the lumens of proximal tubules where it is also synthesized, thus increasing the local concentration of the peptide to levels of potential physiological relevance. In the present work, we studied the effect of ANG II via the luminal membranes of LLC-PK1 cells on Ca2+-ATPase of the sarco(endo) plasmic reticulum (SERCA) and plasma membrane (PMCA). ANG II (at concentrations found in the lumen) stimulated rapid (30 s) and persistent (30 min) SERCA activity by more than 100% and increased Ca2+ mobilization. Pretreatment with ANG II for 30 min enhanced the ANG II-induced Ca2+ spark, demonstrating a positively self-sustained stimulus of Ca2+ mobilization by ANG II. ANG II in the medium facing the luminal side of the cells decreased with time with no formation of metabolites, indicating peptide internalization. ANG II increased heterodimerization of AT(1) and AT(2) receptors by 140%, and either losartan or PD123319 completely blocked the stimulation of SERCA by ANG II. Using the PLC inhibitor U73122, PMA, and calphostin C, it was possible to demonstrate the involvement of a PLC -> DAG(PMA)-> PKC pathway in the stimulation of SERCA by ANG II with no effect on PMCA. We conclude that ANG II triggers SERCA activation via the luminal membrane, increasing the Ca2+ stock in the reticulum to ensure a more efficient subsequent mobilization of Ca2+. This first report on the regulation of SERCA activity by ANG II shows a new mechanism for Ca2+ homeostasis in renal cells and also for regulation of Ca2+-modulated fluid reabsorption in proximal tubules.
Resumo:
The aim of this study is to show histological and immunofluorescence analysis of renal parenchyma of agoutis affected by gentamicin-induced renal disease after the infusion of bone marrow mononuclear cells (BMMC) stained with Hoechst (R). Nine agouti's males were divided into three groups: Test group (TG): renal disease by gentamicin induced (n = 3), cell therapy group (CTG): renal disease by gentamicin induced and BMMC infusion (n = 3), and control group (CG): nonrenal disease and BMMC infusion (n = 3). TG and CTG were submitted to the protocol of renal disease induction using weekly application of gentamicin sulfate for 4 months. CG and CTG received a 1 X 108 BMMC stained with Hoechst and were euthanized for kidney examination 21 days after BMMC injection and samples were collected for histology and immunofluorescence analysis. Histological analysis demonstrated typical interstitial lesions in kidney similarly to human disease, as tubular necrosis, glomerular destruction, atrophy tubular, fibrotic areas, and collagen deposition. We conclude that histological analysis suggest a positive application of agouti's as a model for a gentamicin inducing of kidney disease, beyond the immunofluorescence analysis suggest a significant migration of BMMC to sites of renal injury in CTG. Microsc. Res. Tech., 2012. (c) 2011 Wiley Periodicals, Inc.
Resumo:
Rhipicephalus sanguineus is a widely distributed tick species that has adapted to the urban environment, and the dog is its main host. This species is also known as a vector and reservoir of diseases caused by bacteria, protozoa, and viruses. Currently, acaricides of synthetic chemical origin have been widely and indiscriminately used, leading to the development of resistance to these products by ticks and causing damage to the environment. Thus, these issues have made it necessary to seek other forms of controlling these ectoparasites. R. sanguineus was artificially infested in host New Zealand White rabbits, which were divided into four treatment groups: control (CG1 and CG2) and treatment (TG1 and TG2) groups. TG1 and TG2 hosts were provided with feed supplemented with esters of ricinoleic acid from castor oil at a concentration of 5 g/kg of feed for 7 and 15 days. Afterward, the ovaries of the female ticks were removed for analysis by transmission electron microscopy. The results showed ultrastructural changes in the somatic and germ cells of ovaries from TG1 and TG2 females, particularly with respect to chorion deposition, a protective membrane of the oocyte, as well as in the transport process of vitellogenic materials via the hemolymph and pedicel cells. Moreover, the mitochondria were less electron-dense and had cristae that were more disorganized than the mitochondria from CG1 and CG2 individuals. Thus, this study demonstrated the action of esters on the ovaries of R. sanguineus, signaling the prospect of a way to control this ectoparasite without affecting nontarget organisms or the environment. Microsc. Res. Tech., 2012. (c) 2011 Wiley Periodicals, Inc.
Resumo:
Cisplatin is a highly effective chemotherapeutic drug; however, its use is limited by nephrotoxicity. Studies showed that the renal injury produced by cisplatin involves oxidative stress and cell death mediated by apoptosis and necrosis in proximal tubular cells. The use of antioxidants to decrease cisplatin-induced renal cell death was suggested as a potential therapeutic measure. In this study the possible protective effects of carvedilol, a beta blocker with antioxidant activity, was examined against cisplatin-induced apoptosis in HK-2 human kidney proximal tubular cells. The mitochondrial events involved in this protection were also investigated. Four groups were used: controls (C), cisplatin alone at 25 mu M (CIS), cisplatin 25 mu M plus carvedilol 50 mu M (CV + CIS), and carvedilol alone 50 mu M (CV). Cell viability, apoptosis, caspase-9, and caspase-3 were determined. Data demonstrated that carvedilol effectively increased cell viability and minimized caspase activation and apoptosis in HK-2 cells, indicating this may be a promising drug to reduce nephrotoxicity induced by cisplatin.
Resumo:
Background: Despite advances in supportive care, sepsis-related mortality remains high, especially in patients with acute kidney injury (AKI). Erythropoietin can protect organs against ischemia and sepsis. This effect has been linked to activation of intracellular survival pathways, although the mechanism remains unclear. Continuous erythropoietin receptor activator (CERA) is an erythropoietin with a unique pharmacologic profile and long half-life. We hypothesized that pretreatment with CERA would be renoprotective in the cecal ligation and puncture (CLP) model of sepsis-induced AKI. Methods: Rats were randomized into three groups: control; CLP; and CLP+CERA (5 mu g/kg body weight, i.p. administered 24 h before CLP). At 24 hours after CLP, we measured creatinine clearance, biochemical variables, and hemodynamic parameters. In kidney tissue, we performed immunoblotting-to quantify expression of the Na-K-2Cl cotransporter (NKCC2), aquaporin 2 (AQP2), Toll-like receptor 4 (TLR4), erythropoietin receptor (EpoR), and nuclear factor kappa B (NF-kappa B)-and immunohistochemical staining for CD68 (macrophage infiltration). Plasma interleukin (IL)-2, IL-1 beta, IL-6, IL-10, interferon gamma, and tumor necrosis factor alpha were measured by multiplex detection. Results: Pretreatment with CERA preserved creatinine clearance and tubular function, as well as the expression of NKCC2 and AQP2. In addition, CERA maintained plasma lactate at normal levels, as well as preserving plasma levels of transaminases and lactate dehydrogenase. Renal expression of TLR4 and NF-kappa B was lower in CLP+CERA rats than in CLP rats (p<0.05 and p<0.01, respectively), as were CD68-positive cell counts (p<0.01), whereas renal EpoR expression was higher (p<0.05). Plasma levels of all measured cytokines were lower in CLP+CERA rats than in CLP rats. Conclusion: CERA protects against sepsis-induced AKI. This protective effect is, in part, attributable to suppression of the inflammatory response.