999 resultados para DIRECTIONAL WAVE SPECTRUM
Resumo:
El creciente uso de dispositivos móviles y el gran avance en la mejora de las aplicaciones y sistemas inalámbricos ha impulsado la demanda de filtros paso banda miniaturizados, que trabajen a altas frecuencias y tengan unas prestaciones elevadas. Los filtros basados en resonadores Bulk Acoustic Wave (BAW) están siendo la mejor alternativa a los filtros Surface Acoustic Wave (SAW), ya que funcionan a frecuencias superiores, pueden trabajar a mayores niveles de potencia y son compatibles con la tecnología CMOS. El filtro en escalera, que utiliza resonadores BAW, es de momento la mejor opción, debido a su facilidad de diseño y su bajo coste de fabricación. Aunque el filtro con resonadores acoplados (CRF) presenta mejores prestaciones como mayor ancho de banda, menor tamaño y conversión de modos. El problema de este tipo de filtros reside en su complejidad de diseño y su elevado coste. Este trabajo lleva a cabo el diseño de un CRF a partir de unas especificaciones bastante estrictas, demostrando sus altas prestaciones a pesar de su mayor inconveniente: el coste de fabricación.
Resumo:
Background: There is increasing evidence that impairment of mitochondrial energy metabolism plays an important role in the pathophysiology of autism spectrum disorders (ASD; OMIM number: 209850). A significant proportion of ASD cases display biochemical alterations suggestive of mitochondrial dysfunction and several studies have reported that mutations in the mitochondrial DNA (mtDNA) molecule could be involved in the disease phenotype. Methods: We analysed a cohort of 148 patients with idiopathic ASD for a number of mutations proposed in the literature as pathogenic in ASD. We also carried out a case control association study for the most common European haplogroups (hgs) and their diagnostic single nucleotide polymorphisms (SNPs) by comparing cases with 753 healthy and ethnically matched controls.Results: We did not find statistical support for an association between mtDNA mutations or polymorphisms and ASD.Conclusions: Our results are compatible with the idea that mtDNA mutations are not a relevant cause of ASD and the frequent observation of concomitant mitochondrial dysfunction and ASD could be due to nuclear factors influencing mitochondrion functions or to a more complex interplay between the nucleus and the mitochondrion/mtDNA.
Resumo:
Expressions relating spectral efficiency, power, and Doppler spectrum, are derived for Rayleigh-faded wireless channels with Gaussian signal transmission. No side information on the state of the channel is assumed at the receiver. Rather, periodic reference signals are postulated in accordance with the functioning of most wireless systems. The analysis relies on a well-established lower bound, generally tight and asymptotically exact at low SNR. In contrast with most previous studies, which relied on block-fading channel models, a continuous-fading model is adopted. This embeds the Doppler spectrum directly in the derived expressions, imbuing them with practical significance. Closed-form relationships are obtained for the popular Clarke-Jakes spectrum and informative expansions, valid for arbitrary spectra, are found for the low- and high-power regimes. While the paper focuses on scalar channels, the extension to multiantenna settings is also discussed.
Resumo:
To detect directional couplings from time series various measures based on distances in reconstructed state spaces were introduced. These measures can, however, be biased by asymmetries in the dynamics' structure, noise color, or noise level, which are ubiquitous in experimental signals. Using theoretical reasoning and results from model systems we identify the various sources of bias and show that most of them can be eliminated by an appropriate normalization. We furthermore diminish the remaining biases by introducing a measure based on ranks of distances. This rank-based measure outperforms existing distance-based measures concerning both sensitivity and specificity for directional couplings. Therefore, our findings are relevant for a reliable detection of directional couplings from experimental signals.
Resumo:
The therapeutic efficacy of BAL9141 (formerly Ro 63-9141), a novel cephalosporin with broad in vitro activity that also has activity against methicillin-resistant Staphylococcus aureus (MRSA), was investigated in rats with experimental endocarditis. The test organisms were homogeneously methicillin-resistant S. aureus strain COL transformed with the penicillinase-encoding plasmid pI524 (COL Bla+) and homogeneously methicillin-resistant, penicillinase-producing isolate P8-Hom, selected by serial exposure of parent strain P8 to methicillin. The MICs of BAL9141 for these organisms (2 mg/liter) were low, and BAL9141was bactericidal in time-kill curve studies after 24 h of exposure to either two, four, or eight times the MIC. Rats with experimental endocarditis were treated in a three-arm study with a continuous infusion of BAL5788 (formerly Ro 65-5788), a carbamate prodrug of BAL9141, or with amoxicillin-clavulanate or vancomycin. The rats were administered BAL9141 to obtain steady-state target levels of 20, 10, and 5 mg of per liter or were administered either 1.2 g of amoxicillin-clavulanate (ratio 5:1) every 6 h or 1 g of vancomycin every 12 h at changing flow rates to simulate the pharmacokinetics produced in humans by intermittent intravenous treatment. Treatment was started 12 h after bacterial challenge and lasted for 3 days. BAL9141 was successful in the treatment of experimental endocarditis due to either MRSA isolate COL Bla+ or MRSA isolate P8-Hom at the three targeted steady-state concentrations and sterilized >90% of cardiac vegetations (P < 0.005 versus controls; P < 0.05 versus amoxicillin-clavulanate and vancomycin treatment groups). These promising in vivo results with BAL9141 correlated with the high affinity of the drug for PBP 2a and its stability to penicillinase hydrolysis observed in vitro.
Resumo:
We implemented Biot-type porous wave equations in a pseudo-spectral numerical modeling algorithm for the simulation of Stoneley waves in porous media. Fourier and Chebyshev methods are used to compute the spatial derivatives along the horizontal and vertical directions, respectively. To prevent from overly short time steps due to the small grid spacing at the top and bottom of the model as a consequence of the Chebyshev operator, the mesh is stretched in the vertical direction. As a large benefit, the Chebyshev operator allows for an explicit treatment of interfaces. Boundary conditions can be implemented with a characteristics approach. The characteristic variables are evaluated at zero viscosity. We use this approach to model seismic wave propagation at the interface between a fluid and a porous medium. Each medium is represented by a different mesh and the two meshes are connected through the above described characteristics domain-decomposition method. We show an experiment for sealed pore boundary conditions, where we first compare the numerical solution to an analytical solution. We then show the influence of heterogeneity and viscosity of the pore fluid on the propagation of the Stoneley wave and surface waves in general.
Resumo:
BACKGROUND: : The systolic augmentation index (sAix), calculated from the central aortic pulse wave (reconstructed from the noninvasive recording of the radial pulse with applanation tonometry), is widely used as a simple index of central arterial stiffness, but has the disadvantage of also being influenced by the timing of the reflected with respect to the forward pressure wave, as shown by its inverse dependence on heart rate (HR). During diastole, the central aortic pulse also contains reflected waves, but their relationship to arterial stiffness and HR has not been studied. METHODS: : In 48 men and 45 women, all healthy, with ages ranging from 19 to 70 years, we measured pulse wave velocity (PWV, patients supine), a standard evaluator of arterial stiffness, and carried out radial applanation tonometry (patients sitting and supine). The impact of reflected waves on the diastolic part of the aortic pressure waveform was quantified in the form of a diastolic augmentation index (dAix). RESULTS: : Across ages, sexes, and body position, there was an inverse relationship between the sAix and the dAix. When PWV and HR were added as covariates to a prediction model including age, sex and body position as main factors, the sAix was directly related to PWV (P < 0.0001) and inversely to HR (P < 0.0001). With the same analysis, the dAix was inversely related to PWV (P < 0.0001) and independent of HR (P = 0.52). CONCLUSION: : The dAix has the same degree of linkage to arterial stiffness as the more conventional sAix, while being immune to the confounding effect of HR. The quantification of diastolic aortic pressure augmentation by reflected waves could be a useful adjunct to pulse wave analysis.
Resumo:
Autism spectrum disorders (ASDs) are a heterogeneous group of disorders with a complex genetic etiology. We used high-resolution whole genome array-based comparative genomic hybridization (array-CGH) to screen 223 ASD patients for gene dose alterations associated with susceptibility for autism. Clinically significant copy number variations (CNVs) were identified in 18 individuals (8%), of which 9 cases (4%) had de novo aberrations. In addition, 20 individuals (9%) were shown to have CNVs of unclear clinical relevance. Among these, 13 cases carried rare but inherited CNVs that may increase the risk for developing ASDs, while parental samples were unavailable in the remaining seven cases. Classification of all patients into different phenotypic and inheritance pattern groups indicated the presence of different CNV patterns in different patient groups. Clinically relevant CNVs were more common in syndromic cases compared to non-syndromic cases. Rare inherited CNVs were present in a higher proportion of ASD cases having first- or second-degree relatives with an ASD-related neuropsychiatric phenotype in comparison with cases without reported heredity (P = 0.0096). We conclude that rare CNVs, encompassing potential candidate regions for ASDs, increase the susceptibility for the development of ASDs and related neuropsychiatric disorders giving us further insight into the complex genetics underlying ASDs.
Resumo:
Epstein-Barr virus (EBV)-infected B cells with Reed-Sternberg-like cell (RS) features may occur in peripheral T-cell lymphomas (PTCLs), especially in angioimmunoblastic T-cell lymphoma. Here, we report 5 patients presenting with lymphadenopathy whose first biopsies demonstrated nodular lymphoid proliferations containing scattered CD30, CD15, EBV Hodgkin and Reed-Sternberg-like cells, which led to an initial diagnosis of lymphocyte-rich classical Hodgkin lymphoma. However, the uncommon clinical features and/or the occurrence of relapse as PTCL prompted review of the biopsies with expanded immunohistologic and molecular studies and revision of the diagnoses to follicular variant of PTCL (F-PTCL). All cases had atypical small to medium-sized CD3 T cells that expressed CD10 (4/5) and the follicular helper T-cell (TFH) antigens BCL6, PD1, CXCL13, and ICOS. All demonstrated clonal T cells with a similar pattern in multiple samples from 4 patients. In 2 cases, flow cytometry demonstrated circulating lymphocytes with an abnormal sCD3, CD4, ICOS immunophenotype. Two patients had a skin rash at presentation, and 1 had B symptoms. Two of the 4 patients treated with polychemotherapy are alive at 3 and 6 years after first diagnosis. These cases highlight how some F-PTCLs may closely mimic lymphocyte-rich classical Hodgkin lymphoma requiring careful assessment of the T cells before rendering the latter diagnosis. The functional properties of TFH cells might lead to the presence of EBV-positive B blasts with RS-like features in TFH-derived PTCL such as angioimmunoblastic T-cell lymphoma and F-PTCL.
Resumo:
We present a novel numerical approach for the comprehensive, flexible, and accurate simulation of poro-elastic wave propagation in 2D polar coordinates. An important application of this method and its extensions will be the modeling of complex seismic wave phenomena in fluid-filled boreholes, which represents a major, and as of yet largely unresolved, computational problem in exploration geophysics. In view of this, we consider a numerical mesh, which can be arbitrarily heterogeneous, consisting of two or more concentric rings representing the fluid in the center and the surrounding porous medium. The spatial discretization is based on a Chebyshev expansion in the radial direction and a Fourier expansion in the azimuthal direction and a Runge-Kutta integration scheme for the time evolution. A domain decomposition method is used to match the fluid-solid boundary conditions based on the method of characteristics. This multi-domain approach allows for significant reductions of the number of grid points in the azimuthal direction for the inner grid domain and thus for corresponding increases of the time step and enhancements of computational efficiency. The viability and accuracy of the proposed method has been rigorously tested and verified through comparisons with analytical solutions as well as with the results obtained with a corresponding, previously published, and independently bench-marked solution for 2D Cartesian coordinates. Finally, the proposed numerical solution also satisfies the reciprocity theorem, which indicates that the inherent singularity associated with the origin of the polar coordinate system is adequately handled.
Resumo:
Introduction: To investigate differences in twitch and M-wave potentiation in the quadriceps femoris when electrical stimulation is applied over the quadriceps muscle belly versus the femoral nerve trunk. Methods: M-waves and mechanical twitches were evoked using direct quadriceps muscle and femoral nerve stimulation between 48 successive isometric maximal voluntary contractions (MVC) from 10 young, healthy subjects. Potentiation was investigated by analyzing the changes in M-wave amplitude recorded from the vastus medialis (VM) and vastus lateralis (VL) muscles and in quadriceps peak twitch force. Results: Potentiation of twitch, VM M-wave, and VL M-wave were greater for femoral nerve than for direct quadriceps stimulation (P<0.05). Despite a 50% decrease in MVC force, the amplitude of the M-waves increased significantly during exercise. Conclusions: In addition to enhanced electrogenic Na(+) -K(+) pumping, other factors (such as synchronization in activation of muscle fibers and muscle architectural properties) might significantly influence the magnitude of M-wave enlargement. © 2013 Wiley Periodicals, Inc.
Resumo:
Audit report on Wave 2 of the Phase II Strategic Sourcing Initiative implemented by the Department of Administrative Services