885 resultados para DIFFUSION LENGTH
Resumo:
We study the relationship between openness and payment system development. In particular, we analyze how the existence of technology diffusion from a more developed country fosters a transformation of payment choice in a less developed country. We apply our analysis to Mexico. Economic growth in Mexico was not high enough to cause a transformation of payment choice observed in the data after 2001. We argue that the switch towards electronic payments can be attributed to openness and related payment technology spillovers from the US in the context of NAFTA.
Resumo:
En aquest article es resumeixen els resultats publicats en un informe de l' ISS (Istituto Superiore di Sanità) del desembre de 2006, sobre un model matemàtic desenvolupat per un grup de treball que inclou a investigadors de les Universitats de Trento, Pisa i Roma, i els Instituts Nacionals de Salut (Istituto Superiore di Sanità, ISS), per avaluar i mesurar l'impacte de la transmissió i el control de la pandèmia de grip
Resumo:
Currently, it is accepted that there are three species that were formerly grouped under Candida parapsilosis: C. para- psilosis sensu stricto, Candida orthopsilosis, andCandida metapsilosis. In fact, the antifungal susceptibility profiles and distinct virulence attributes demonstrate the differences in these nosocomial pathogens. An accurate, fast, and economical identification of fungal species has been the main goal in mycology. In the present study, we searched sequences that were available in the GenBank database in order to identify the complete sequence for the internal transcribed spacer (ITS)1-5.8S-ITS2 region, which is comprised of the forward and reverse primers ITS1 and ITS4. Subsequently, an in silico polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed to differentiate the C. parapsilosis complex species. Ninety-eight clinical isolates from patients with fungaemia were submitted for analysis, where 59 isolates were identified as C. parapsilosis sensu stricto, 37 were identified as C. orthopsilosis, and two were identified as C. metapsilosis. PCR-RFLP quickly and accurately identified C. parapsilosis complex species, making this method an alternative and routine identification system for use in clinical mycology laboratories.
Resumo:
BACKGROUND & AIMS: A fast-track program is a multimodal approach for patients undergoing colonic surgery that combines stringent regimens of perioperative care (fluid restriction, optimized analgesia, forced mobilization, and early oral feeding) to reduce perioperative morbidity, hospital stay, and cost. We investigated the impact of a fast-track protocol on postoperative morbidity in patients after open colonic surgery. METHODS: A randomized trial of patients in 4 teaching hospitals in Switzerland included 156 patients undergoing elective open colonic surgery who were assigned to either a fast-track program or standard care. The primary end point was the 30-day complication rate. Secondary end points were severity of complications, hospital stay, and compliance with the fast-track protocol. RESULTS: The fast-track protocol significantly decreased the number of complications (16 of 76 in the fast-track group vs 37 of 75 in the standard care group; P = .0014), resulting in shorter hospital stays (median, 5 days; range, 2-30 vs 9 days, respectively; range, 6-30; P < .0001). There was a trend toward less severe complications in the fast-track group. A multiple logistic regression analysis revealed fluid administration greater than the restriction limits (odds ratio, 4.198; 95% confidence interval, 1.7-10.366; P = .002) and a nonfunctioning epidural analgesia (odds ratio, 3.365; 95% confidence interval, 1.367-8.283; P = .008) as independent predictors of postoperative complications. CONCLUSIONS: The fast-track program reduces the rate of postoperative complications and length of hospital stay and should be considered as standard care. Fluid restriction and an effective epidural analgesia are the key factors that determine outcome of the fast-track program.
Resumo:
MRI tractography is the mapping of neural fiber pathways based on diffusion MRI of tissue diffusion anisotropy. Tractography based on diffusion tensor imaging (DTI) cannot directly image multiple fiber orientations within a single voxel. To address this limitation, diffusion spectrum MRI (DSI) and related methods were developed to image complex distributions of intravoxel fiber orientation. Here we demonstrate that tractography based on DSI has the capacity to image crossing fibers in neural tissue. DSI was performed in formalin-fixed brains of adult macaque and in the brains of healthy human subjects. Fiber tract solutions were constructed by a streamline procedure, following directions of maximum diffusion at every point, and analyzed in an interactive visualization environment (TrackVis). We report that DSI tractography accurately shows the known anatomic fiber crossings in optic chiasm, centrum semiovale, and brainstem; fiber intersections in gray matter, including cerebellar folia and the caudate nucleus; and radial fiber architecture in cerebral cortex. In contrast, none of these examples of fiber crossing and complex structure was identified by DTI analysis of the same data sets. These findings indicate that DSI tractography is able to image crossing fibers in neural tissue, an essential step toward non-invasive imaging of connectional neuroanatomy.
Resumo:
Like most somatic human cells, T lymphocytes have a limited replicative life span. This phenomenon, called senescence, presents a serious barrier to clinical applications that require large numbers of Ag-specific T cells such as adoptive transfer therapy. Ectopic expression of hTERT, the human catalytic subunit of the enzyme telomerase, permits fibroblasts and endothelial cells to avoid senescence and to become immortal. In an attempt to immortalize normal human CD8(+) T lymphocytes, we infected bulk cultures or clones of these cells with a retrovirus transducing an hTERT cDNA clone. More than 90% of transduced cells expressed the transgene, and the cell populations contained high levels of telomerase activity. Measuring the content of total telomere repeats in individual cells (by flowFISH) we found that ectopic hTERT expression reversed the gradual loss of telomeric DNA observed in control populations during long term culture. Telomere length in transduced cells reached the levels observed in freshly isolated normal CD8(+) lymphocytes. Nevertheless, all hTERT-transduced populations stopped to divide at the same time as nontransduced or vector-transduced control cells. When kept in IL-2 the arrested cells remained alive. Our results indicate that hTERT may be required but is not sufficient to immortalize human T lymphocytes.
Resumo:
PURPOSE: To compare the apparent diffusion coefficient (ADC) values of malignant liver lesions on diffusion-weighted MRI (DWI) before and after successful radiofrequency ablation (RF ablation). MATERIALS AND METHODS: Thirty-two patients with 43 malignant liver lesions (23/20: metastases/hepatocellular carcinomas (HCC)) underwent liver MRI (3.0T) before (<1month) and after RF ablation (at 1, 3 and 6months) using T2-, gadolinium-enhanced T1- and DWI-weighted MR sequences. Jointly, two radiologists prospectively measured ADCs for each lesion by means of two different regions of interest (ROIs), first including the whole lesion and secondly the area with the visibly most restricted diffusion (MRDA) on ADC map. Changes of ADCs were evaluated with ANOVA and Dunnett tests. RESULTS: Thirty-one patients were successfully treated, while one patient was excluded due to focal recurrence. In metastases (n=22), the ADC in the whole lesion and in MRDA showed an up-and-down evolution. In HCC (n=20), the evolution of ADC was more complex, but with significantly higher values (p=0.013) at 1 and 6months after RF ablation. CONCLUSION: The ADC values of malignant liver lesions successfully treated by RF ablation show a predictable evolution and may help radiologists to monitor tumor response after treatment.
Resumo:
We present the derivation of the continuous-time equations governing the limit dynamics of discrete-time reaction-diffusion processes defined on heterogeneous metapopulations. We show that, when a rigorous time limit is performed, the lack of an epidemic threshold in the spread of infections is not limited to metapopulations with a scale-free architecture, as it has been predicted from dynamical equations in which reaction and diffusion occur sequentially in time
Resumo:
The speed of front propagation in fractals is studied by using (i) the reduction of the reaction-transport equation into a Hamilton-Jacobi equation and (ii) the local-equilibrium approach. Different equations proposed for describing transport in fractal media, together with logistic reaction kinetics, are considered. Finally, we analyze the main features of wave fronts resulting from this dynamic process, i.e., why they are accelerated and what is the exact form of this acceleration
Resumo:
The effect of initial conditions on the speed of propagating fronts in reaction-diffusion equations is examined in the framework of the Hamilton-Jacobi theory. We study the transition between quenched and nonquenched fronts both analytically and numerically for parabolic and hyperbolic reaction diffusion. Nonhomogeneous media are also analyzed and the effect of algebraic initial conditions is also discussed
Resumo:
Background: New ways of representing diffusion data emerged recently and achieved to create structural connectivitymaps in healthy brains (Hagmann P et al. (2008)). These maps have the capacity to study alterations over the entire brain at the connection and network level. This is of high interest in complex disconnection diseases like schizophrenia. In this Pathology where multiple lines of evidence suggest the association of the pathology with abnormalities in neural circuitry and impaired structural connectivity, the diffusion imaging has been widely applied. Despite the large findings, most of the research using the diffusion just uses some scalar map derived from diffusion to show that some markers of white matter integrity are diminished in several areas of the brain (Kyriakopoulos M et al (2008)). Thanks to the structural connectionmatrix constructed by the whole brain tractography, we report in this work the network connectivity alterations in the schizophrenic patients. Methods: We investigated 13 schizophrenic patients as assessed by the DIGS (Diagnostic Interview for genetic studies, DSM IV criteria) and 13 healthy controls. We have got from each volunteer a DT-MRI as well as Qball imaging dataset and a high resolution anatomic T1 performed during the same session; with a 3 T clinical MRI scanner. The controls were matched on age, gender, handedness, and parental social economic-status. For all the subjects, a low resolution connection matrix is obtained by dividing the cortex into 66 gyral based ROIs. A higher resolution matrix is constructed using 250 ROIs as described in Hagmann P et al. (2008). These ROIs are respectively used jointly with the diffusion tractography to construct the high and low resolution densities connection matrices for each subject. In a first step the matrices of the groups are compared in term of connectivity, and not in term of density to check if the pathological group shows a loss of global connectivity. In this context the density connection matrices were binarized. As some local connectivity changes were also suspected, especially in frontal and temporal areas, we have also looked for the areas where the connectivity showed significant changes. Results: The statistical analysis revealed a significant loss of global connectivity in the schizophrenic's brains at level 5%. Furthermore, by constructing specific statistics which represent local connectivity within the anatomical regions (66 ROIs) using the data obtained by the finest resolution (250 ROIs) to improve the robustness, we found the regions that cause this significant loss of connectivity. The significance is observed after multiple testing corrections by the False Discovery Rate. Discussion: The detected regions are almost the same as those reported in the literature as the involved regions in schizophrenia. Most of the connectivity decreases are noted in both hemispheres in the fronto-frontal and temporo-temporal regions as well as some temporal ROIs with their adjacent ROIs in parietal and occipital lobes.
Resumo:
Evolutionary processes acting at the expanding margins of a species' range are still poorly understood. Genetic drift is considered prevalent in marginal populations, and the maintenance of genetic diversity during recolonization might seem puzzling. To investigate such processes, a fine-scale investigation of 219 individuals was performed within a population of Biscutella laevigata (Brassicaceae), located at the leading edge of its range. The survey used amplified fragment length polymorphisms (AFLPs). As commonly reported across the whole species distribution range, individual density and genetic diversity decreased along the local axis of recolonization of this expanding population, highlighting the enduring effect of the historical colonization on present-day diversity. The self-incompatibility system of the plant may have prevented local inbreeding in newly found patches and sustained genetic diversity by ensuring gene flow from established populations. Within the more continuously populated region, spatial analysis of genetic structure revealed restricted gene flow among individuals. The distribution of genotypes formed a mosaic of relatively homogenous patches within the continuous population. This pattern could be explained by a history of expansion by long-distance dispersal followed by fine-scale diffusion (that is, a stratified dispersal combination). The secondary contact among expanding patches apparently led to admixture among differentiated genotypes where they met (that is, a reshuffling effect). This type of dynamics could explain the maintenance of genetic diversity during recolonization.
Resumo:
Concentration gradients regulate many cell biological and developmental processes. In rod-shaped fission yeast cells, polar cortical gradients of the DYRK family kinase Pom1 couple cell length with mitotic commitment by inhibiting a mitotic inducer positioned at midcell. However, how Pom1 gradients are established is unknown. Here, we show that Tea4, which is normally deposited at cell tips by microtubules, is both necessary and, upon ectopic cortical localization, sufficient to recruit Pom1 to the cell cortex. Pom1 then moves laterally at the plasma membrane, which it binds through a basic region exhibiting direct lipid interaction. Pom1 autophosphorylates in this region to lower lipid affinity and promote membrane release. Tea4 triggers Pom1 plasma membrane association by promoting its dephosphorylation through the protein phosphatase 1 Dis2. We propose that local dephosphorylation induces Pom1 membrane association and nucleates a gradient shaped by the opposing actions of lateral diffusion and autophosphorylation-dependent membrane detachment.