433 resultados para DEFLECTION
Resumo:
La fatiga superficial es uno de los principales problemas en las transmisiones mecánicas y es uno de los focos de atención de las investigaciones de los últimos anos en Tribología. La disminución de viscosidad de los lubricantes para la mejora de la eficiencia, el aumento de las potencias a transmitir, el aumento de la vida de los componentes o la mejora de su fiabilidad han supuesto que los fenómenos de fatiga superficial hayan cobrado especial relevancia, especialmente los fenómenos de pitting y micropitting en cajas multiplicadoras/reductoras de grandes potencias de aplicación, por ejemplo, en el sector eólico. Como todo fenómeno de fatiga, el pitting y micropitting son debidos a la aplicación de cargas ciclicas. Su aparición depende de las presiones y tensiones cortantes en el contacto entre dos superficies que al encontrarse en rodadura y deslizamiento varian con el tiempo. La principal consecuencia de la fatiga superficial es la aparición de hoyuelos de diferente magnitud segun la escala del fenómeno (pitting o micropitting) en la superficie del material. La aparición de estos hoyuelos provoca la perdida de material, induce vibraciones y sobrecargas en el elemento que finalmente acaba fallando. Debido a la influencia de la presión y tensión cortante en el contacto, la aparición de fatiga depende fuertemente del lubricante que se encuentre entre las dos superficies y de las condiciones de funcionamiento en las cuales este trabajando. Cuando el contacto trabaja en condiciones de lubricacion mixta-elastohidrodinamica tiende a aparecer micropitting debido a las altas tensiones localizadas en las proximidades de las asperezas, mientras que si el régimen es de lubricación completa el tipo de fatiga superficial suele ser pitting debido a las tensiones mas suavizadas y menos concentradas. En esta Tesis Doctoral se han analizado todos estos factores de influencia que controlan el pitting y el micropitting prestando especial atención al efecto del lubricante. Para ello, se ha dado un enfoque conjunto a ambos fenómenos resolviendo las ecuaciones involucradas en el contacto elastohidrodinamico no-Newtoniano (la ecuación de Reynolds, la deformación elástica de los sólidos y la reologia del lubricante) para conocer la presión y la tensión cortante en el contacto. Conocidas estas, se resuelve el campo de tensiones en el interior del material y, finalmente, se aplican criterios de fatiga multiaxial (Crossland, Dang Van y Liu-Mahadevan) para conocer si el material falla o no falla. Con la metodología desarrollada se ha analizado el efecto sobre las tensiones y la aparición de la fatiga superficial del coeficiente viscosidad-presion, de la compresibilidad, del espesor especifico de película y de la fricción así como de la influencia de las propiedades a fatiga del material y de las condiciones de funcionamiento (radios de contacto, velocidad, deslizamiento, carga y temperatura). Para la validación de los resultados se han utilizado resultados teóricos y experimentales de otros autores junto con normas internacionales de amplia utilización en el mundo industrial, entre otras, para el diseño y calculo de engranajes. A parte del trabajo realizado por simulación y cálculo de los diferentes modelos desarrollados, se ha realizado un importante trabajo experimental que ha servido no solo para validar la herramienta desarrollada sino que además ha permitido incorporar al estudio factores no considerados en los modelos, como los aditivos del lubricante. Se han realizado ensayos de medida del coeficiente de fricción en una maquina de ensayo puntual con la que se ha validado el cálculo del coeficiente de fricción y se ha desarrollado un proceso de mejora del coeficiente de fricción mediante texturizado superficial en contactos puntuales elastohidrodinamicos mediante fotolitografia y ataque quimico. Junto con los ensayos de medida de fricción en contacto puntual se han realizado ensayos de fricción y fatiga superficial en contacto lineal mediante una maquina de discos que ha permitido evaluar la influencia de diferentes aditivos (modificadores de fricción, antidesgaste y extrema-presion) en la aparición de fatiga superficial (pitting y micropitting) y la fricción en el contacto. Abstract Surface fatigue is one of the most important problems of mechanical transmissions and therefore has been one of the main research topics on Tribology during the last years. On the one hand, industrial demand on fuel economy has led to reduce lubricant viscosity in order to improve efficiency. On the other hand, the requirements of power and life of machine elements are continuously increasing, together with the improvements in reliability. As a consequence, surface fatigue phenomena have become critical in machinery, in particular pitting and micropitting in high power gearboxes of every kind of machines, e.g., wind turbines or cranes. In line with every fatigue phenomena, pitting and micropitting are caused by cyclic loads. Their appearance depends on the evolution of pressures and shear stresses with time, throughout the contact between surfaces under rolling and sliding conditions. The main consequence of surface fatigue is the appearance of pits on the surface. The size of the pits is related to the scale of the fatigue: pitting or micropitting. These pits cause material loss, vibrations and overloads until the final failure is reached. Due to the great influence of the pressures and shear stresses in surface fatigue, the appearance of pits depends directly on the lubricant and the operating conditions. When the contact works under mixed regime (or under elastohydrodynamic but close to mixed regime) the main fatigue failure is micropitting because of the high pressures located near the asperities. In contrast, when the contact works under elastohydrodynamic fully flooded conditions the typical fatigue failure is pitting. In this Ph.D. Thesis, the main factors with influence on pitting and micropitting phenomena are analyzed, with special attention to the effect of the lubricant. For this purpose, pitting and micropitting are studied together by solving the equations involved in the non-Newtonian elastohydrodynamic contact. Thus, pressure and shear stress distributions are found by taking into account Reynolds equation, elastic deflection of the solids and lubricant rheology. Subsequently, the stress field inside the material can be calculated and different multiaxial fatigue criteria (Crossland, Dang Van and Liu- Mahadevan) can be applied to predict whether fatigue failure is reached. The influences of the main parameters on pressure and surface fatigue have been studied, taking into account the lubricant compressibility and its viscosity-pressure coefficient, the specific film thickness, the friction coefficient and the fatigue properties of the contacting materials, together with the operating conditions (contact radius, mean velocity, sliding velocity, load and temperature). Several theoretical and experimental studies of different authors have been used to validate all the results obtained, together with international standards used worldwide in gear design industry. Moreover, an experimental stage has been carried out in order to validate the calculation methods and introduce additional influences not included previously, e.g., lubricant additives. The experimentation includes different friction tests in point contacts performed with a tribological equipment in order to validate the results given by the calculations. Furthermore, the reduction and optimization of the friction coefficient is analyzed by means of textured surfaces, obtained combining photolithography and chemical etching techniques. Besides the friction tests with point contact, friction and surface fatigue tests have also been performed with line contact in a tribological test rig. This equipment is also used to study the influence of different types of additives (friction modifiers, anti-wear and extreme-pressure additives) on surface fatigue (pitting and micropitting).
Resumo:
The thermal and thermomechanical properties of poly(phenylene sulphide) (PPS) based nanocomposites incorporating a polymer derivative covalently anchored onto single-walled carbon nanotubes (SWCNTs) were investigated. The grafted fillers acted as nucleating agents, increasing the crystallization temperature and degree of crystallinity of the matrix. They also enhanced its thermal stability, flame retardancy, glass transition (Tg) and heat deflection temperatures while reduced the coefficient of thermal expansion at temperatures below Tg. A strong rise in the thermal conductivity, Young?s modulus and tensile strength was found with increasing filler loading both in the glassy and rubbery states. All these outstanding improvements are ascribed to strong matrix-filler interfacial interactions combined with a compatibilization effect that results in very homogeneous SWCNT dispersion. The results herein offer useful insights towards the development of engineering thermoplastic/CNT nanocomposites for high-temperature applications.
Resumo:
Carbon fiber (CF)-reinforced high-temperature thermoplastics such as poly(phenylene sulphide) (PPS) are widely used in structural composites for aerospace and automotive applications. The porosity of CF-reinforced polymers is a very important topic for practical applications since there is a direct correlation between void content and mechanical properties. In this study, inorganic fullerene-like tungsten disulphide (IF-WS2) lubricant nanoparticles were used to manufacture PPS/IF-WS2/CF laminates via melt-blending and hot-press processing, and the effect of IF-WS2 loading on the quality, thermal and mechanical behaviour of the hybrid composites was investigated. The addition of IF-WS2 improved fiber impregnation, resulting in lower degree of porosity and increased delamination resistance, compression and flexural properties; their reinforcement effect was greater at temperatures above the glass transition (Tg). IF-WS2 contents higher than 0.5 wt % increased Tg and the heat deflection temperature while reduced the coefficient of thermal expansion. The multiscale laminates exhibited higher ignition point and notably reduced peak heat release rate compared to PPS/CF. The coexistence of micro- and nano-scale fillers resulted in synergistic effects that enhanced the stiffness, strength, thermal conductivity and flame retardancy of the matrix. The results presented herein demonstrate that the IF-WS2 are very promising nanofillers to improve the thermomechanical properties of conventional thermoplastic/CF composites.
Resumo:
The thermal and mechanical behaviour of isotactic polypropylene (iPP) nanocomposites reinforced with different loadings of inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles was investigated. The IF-WS2 noticeably enhanced the polymer stiffness and strength, ascribed to their uniform dispersion, the formation of a large nanoparticle?matrix interface combined with a nucleating effect on iPP crystallization. Their reinforcement effect was more pronounced at high temperatures. However, a drop in ductility and toughness was found at higher IF-WS2 concentrations. The tensile behaviour of the nanocomposites was extremely sensitive to the strain rate and temperature, and their yield strength was properly described by the Eyring s equation. The activation energy increased while the activation volume decreased with increasing nanoparticle loading, indicating a reduction in polymer chain motion. The nanoparticles improved the thermomechanical properties of iPP: raised the glass transition and heat deflection temperatures while decreased the coefficient of thermal expansion. The nanocomposites also displayed superior flame retardancy with longer ignition time and reduced peak heat release rate. Further, a gradual rise in thermal conductivity was found with increasing IF-WS2 loading both in the glassy and rubbery states. The results presented herein highlight the benefits and high potential of using IF-nanoparticles for enhancing the thermomechanical properties of thermoplastic polymers compared to other nanoscale fillers.
Resumo:
Sandwich panels of laminated gypsum and rock wool have shown large pathology of cracking due to excessive slabs deflection. Currently the most widespread use of this material is as vertical elements of division or partition, with no structural function, what justifies that there are no studies on the mechanism of fracture and mechanical properties related to it. Therefore, and in order to reduce the cracking problem, it is necessary to progress in the simulation and prediction of the behaviour under tensile and shear load of such panels, although in typical applications have no structural responsability.
Resumo:
Dynamics of binary mixtures such as polymer blends, and fluids near the critical point, is described by the model-H, which couples momentum transport and diffusion of the components [1]. We present an extended version of the model-H that allows to study the combined effect of phase separation in a polymer blend and surface structuring of the film itself [2]. We apply it to analyze the stability of vertically stratified base states on extended films of polymer blends and show that convective transport leads to new mechanisms of instability as compared to the simpler diffusive case described by the Cahn- Hilliard model [3, 4]. We carry out this analysis for realistic parameters of polymer blends used in experimental setups such as PS/PVME. However, geometrically more complicated states involving lateral structuring, strong deflections of the free surface, oblique diffuse interfaces, checkerboard modes, or droplets of a component above of the other are possible at critical composition solving the Cahn Hilliard equation in the static limit for rectangular domains [5, 6] or with deformable free surfaces [6]. We extend these results for off-critical compositions, since balanced overall composition in experiments are unusual. In particular, we study steady nonlinear solutions of the Cahn-Hilliard equation for bidimensional layers with fixed geometry and deformable free surface. Furthermore we distinguished the cases with and without energetic bias at the free surface. We present bifurcation diagrams for off-critical films of polymer blends with free surfaces, showing their free energy, and the L2-norms of surface deflection and the concentration field, as a function of lateral domain size and mean composition. Simultaneously, we look at spatial dependent profiles of the height and concentration. To treat the problem of films with arbitrary surface deflections our calculations are based on minimizing the free energy functional at given composition and geometric constraints using a variational approach based on the Cahn-Hilliard equation. The problem is solved numerically using the finite element method (FEM).
Resumo:
A novel structure , based on a wedge shaped configuration, is presented . This structure , previously used in one of his forms,for refraction index measurements is analysed in this paper. The results obtained give the possibility of his use in electro snd magneto-optical modulation and deflection.
Resumo:
Motivado por los últimos hallazgos realizados gracias a los recientes avances tecnológicos y misiones espaciales, el estudio de los asteroides ha despertado el interés de la comunidad científica. Tal es así que las misiones a asteroides han proliferado en los últimos años (Hayabusa, Dawn, OSIRIX-REx, ARM, AIMS-DART, ...) incentivadas por su enorme interés científico. Los asteroides son constituyentes fundamentales en la evolución del Sistema Solar, son además grandes concentraciones de valiosos recursos naturales, y también pueden considerarse como objectivos estratégicos para la futura exploración espacial. Desde hace tiempo se viene especulando con la posibilidad de capturar objetos próximos a la Tierra (NEOs en su acrónimo anglosajón) y acercarlos a nuestro planeta, permitiendo así un acceso asequible a los mismos para estudiarlos in-situ, explotar sus recursos u otras finalidades. Por otro lado, las asteroides se consideran con frecuencia como posibles peligros de magnitud planetaria, ya que impactos de estos objetos con la Tierra suceden constantemente, y un asteroide suficientemente grande podría desencadenar eventos catastróficos. Pese a la gravedad de tales acontecimientos, lo cierto es que son ciertamente difíciles de predecir. De hecho, los ricos aspectos dinámicos de los asteroides, su modelado complejo y las incertidumbres observaciones hacen que predecir su posición futura con la precisión necesaria sea todo un reto. Este hecho se hace más relevante cuando los asteroides sufren encuentros próximos con la Tierra, y más aún cuando estos son recurrentes. En tales situaciones en las cuales fuera necesario tomar medidas para mitigar este tipo de riesgos, saber estimar con precisión sus trayectorias y probabilidades de colisión es de una importancia vital. Por ello, se necesitan herramientas avanzadas para modelar su dinámica y predecir sus órbitas con precisión, y son también necesarios nuevos conceptos tecnológicos para manipular sus órbitas llegado el caso. El objetivo de esta Tesis es proporcionar nuevos métodos, técnicas y soluciones para abordar estos retos. Las contribuciones de esta Tesis se engloban en dos áreas: una dedicada a la propagación numérica de asteroides, y otra a conceptos de deflexión y captura de asteroides. Por lo tanto, la primera parte de este documento presenta novedosos avances de apliación a la propagación dinámica de alta precisión de NEOs empleando métodos de regularización y perturbaciones, con especial énfasis en el método DROMO, mientras que la segunda parte expone ideas innovadoras para la captura de asteroides y comenta el uso del “ion beam shepherd” (IBS) como tecnología para deflectarlos. Abstract Driven by the latest discoveries enabled by recent technological advances and space missions, the study of asteroids has awakened the interest of the scientific community. In fact, asteroid missions have become very popular in the recent years (Hayabusa, Dawn, OSIRIX-REx, ARM, AIMS-DART, ...) motivated by their outstanding scientific interest. Asteroids are fundamental constituents in the evolution of the Solar System, can be seen as vast concentrations of valuable natural resources, and are also considered as strategic targets for the future of space exploration. For long it has been hypothesized with the possibility of capturing small near-Earth asteroids and delivering them to the vicinity of the Earth in order to allow an affordable access to them for in-situ science, resource utilization and other purposes. On the other side of the balance, asteroids are often seen as potential planetary hazards, since impacts with the Earth happen all the time, and eventually an asteroid large enough could trigger catastrophic events. In spite of the severity of such occurrences, they are also utterly hard to predict. In fact, the rich dynamical aspects of asteroids, their complex modeling and observational uncertainties make exceptionally challenging to predict their future position accurately enough. This becomes particularly relevant when asteroids exhibit close encounters with the Earth, and more so when these happen recurrently. In such situations, where mitigation measures may need to be taken, it is of paramount importance to be able to accurately estimate their trajectories and collision probabilities. As a consequence, advanced tools are needed to model their dynamics and accurately predict their orbits, as well as new technological concepts to manipulate their orbits if necessary. The goal of this Thesis is to provide new methods, techniques and solutions to address these challenges. The contributions of this Thesis fall into two areas: one devoted to the numerical propagation of asteroids, and another to asteroid deflection and capture concepts. Hence, the first part of the dissertation presents novel advances applicable to the high accuracy dynamical propagation of near-Earth asteroids using regularization and perturbations techniques, with a special emphasis in the DROMO method, whereas the second part exposes pioneering ideas for asteroid retrieval missions and discusses the use of an “ion beam shepherd” (IBS) for asteroid deflection purposes.
Resumo:
Una técnica de refuerzo de elementos flectados en general y, en particular, de vigas y forjados de hormigón armado, consiste en la disposición de perfiles metálicos por debajo de los elementos a reforzar y retacados a ellos. En muchos casos este refuerzo se diseña con un planteamiento pasivo, es decir, los perfiles no entran en carga hasta que no se incrementan las acciones sobre el elemento reforzado, o lo hacen sólo ligeramente y de forma cuantitativamente no controlada efectuando el retacado mediante cuñas metálicas. En el presente trabajo se estudia la alternativa del refuerzo de vigas de hormigón armado frente a momentos flectores con un planteamiento activo, introduciendo unas fuerzas (por ejemplo, mediante gatos o barras roscadas) entre el perfil y el elemento a reforzar, y retacando posteriormente el perfil a la viga en los puntos de introducción de las fuerzas, mediante cuñas metálicas, mortero, etc. La propuesta que formulamos en el presente trabajo de investigación para el control de las fuerzas introducidas consiste en la medida de las flechas que se producen en el perfil metálico al hacerlo reaccionar contra la viga. Esto permite el empleo de procedimientos sencillos para la predeformación del perfil que no dispongan de dispositivos de medida de la carga introducida, o bien controlar la veracidad de las medidas de las fuerzas que dan tales dispositivos. La gran fiabilidad que tiene el cálculo de flechas en jácenas metálicas hace que con este procedimiento se puedan conocer con gran precisión las fuerzas introducidas. Las medidas de las flechas se pueden llevar a cabo mediante los procedimientos de instrumentación habituales en pruebas de carga, con una precisión más que suficiente para conocer y controlar con fiabilidad el valor de las fuerzas que el perfil ejerce sobre la viga. Los perfiles necesarios para el refuerzo con esta técnica son netamente inferiores a los que se precisarían con el planteamiento pasivo antes indicado. En el trabajo de investigación se recoge un estudio sobre el número, posición y valor de las fuerzas de refuerzo a introducir, en función de la carga para la que se diseña el refuerzo y la capacidad resistente del elemento a reforzar, y se analizan los valores máximos que pueden tener dichas fuerzas, en función de la capacidad de la pieza frente a momentos de signo contrario a los debidos a las cargas gravitatorias. A continuación se analiza la interacción viga-perfil al incrementarse las cargas sobre la viga desde el instante de la ejecución del refuerzo, interacción que hace variar el valor de las fuerzas que el perfil ejerce sobre la viga. Esta variación permite contar con un incremento en las fuerzas de refuerzo si, con las cargas permanentes presentes al reforzar, no podemos introducirlas inicialmente con el valor necesario, o si se producen pérdidas en las propias fuerzas. Este es uno de los criterios a la hora de seleccionar las características del perfil. Por el contrario, dicha variación puede suponer que en algunos puntos a lo largo del vano se supere la capacidad a flexión frente a momentos de signo contrario a los debidos a las cargas gravitatorias, lo que también debe ser tenido en cuenta. Seguidamente se analizan diferentes aspectos que producen una variación en el valor de las fuerzas de refuerzo, como son las deformaciones diferidas del hormigón (fluencia y retracción), los gradientes de temperatura en la pieza, o la actuación de sobrecargas en los vanos adyacentes. Se concluye los efectos de estos fenómenos, que en ocasiones tienen gran influencia, pueden ser cuantificados por el proyectista, recogiéndose propuestas sencillas para su consideración en casos habituales. Posteriormente recogemos una propuesta de metodología de comprobación del refuerzo, en cuanto a cómo considerar la fisuración y evolución del módulo de deformación de la viga, la introducción de la seguridad, la influencia de las tolerancias de laminación en el perfil sobre el valor calculado de las flechas necesarias en el perfil para introducir las fuerzas iniciales proyectadas, o la situación accidental de fuego, entre otros aspectos. Por último, se exponen las conclusiones más relevantes de la investigación realizada, y se proponen futuras líneas de investigación. One technique for strengthening flexural members in general, and reinforced concrete beams and slabs in particular, entails caulking the underside of these members with steel shapes. This sort of strengthening is often designed from a passive approach; i.e., until the load is increased, the shapes are either not loaded or are only slightly loaded to some unquantified extent by caulking with steel shims. The present study explored the possibility of actively strengthening the capacity of reinforced concrete beams to resist bending moments by applying forces (with jacks or threaded bars, for instance) between the shape and the member to be strengthened. The shape is subsequently caulked under the beam at the points where the forces are applied with steel shims, mortar or similar. The proposal put forward in the present study to monitor the forces applied consists in measuring the deflection on the steel shape as it reacts against the beam. With this technique, the shape can be pre-strained using simple procedures that do not call for devices to measure the force applied, or the accurancy of the respective measurements can be verified. As deflection calculations in steel girders are extremely reliable, the forces applied with this procedure can be very precisely determined. Standard instrumental procedures for load testing can be used to measure deflection with more than sufficient precision to reliably determine and monitor the value of the forces exerted on the beam by the shape. Moreover, the shapes required to strengthen members with this technique are substantially smaller than the ones needed in the aforementioned passive approach. This study addressed the number, position and value of the strengthening forces to be applied in terms of the load for which strengthening was designed and the bearing capacity of the member to be strengthened. The maximum value of such forces was also analysed as a function of the capacity of the member to resist counter-gravity moments. An analysis was then conducted of beam-shape interaction when the load on the beam raises since the instant that strengthening is applied, interaction that alters the forces applied to the beam by the shape. This variation can provide an increment in the forces if we cannot introduce them initially with the value calculated as necessary because they were limited by the permanent loads existing when strengthening, or if losses occur in the forces themselves. This is one of the criteria for defining shape specifications. Conversely, such variation may cause the forces to exceed beam counter-gravity bending strength at some points in the span, a development that must also be taken into consideration. Other factors inducing variations in the strengthening force values were then analysed, including deferred concrete strain (creep and shrinkage), temperature gradients in the member and the live loads acting on adjacent spans. The inference drawn was that these developments, which may on occasion have a heavy impact, can be quantified by the design engineer, particularly in ordinary situations, for which simple procedures are proposed. Methodology is likewise proposed for verifying strength in terms of how to appraise beam's cracking and variations in modulus of deformation; safety concerns; the effect of shape lamination tolerance on the calculated deflection necessary for the shape to apply the design forces; and fire-induced situations, among others. Lastly, the most prominent conclusions are discussed and future lines of research are suggested.
Resumo:
In recent years, many experimental and theoretical research groups worldwide have actively worked on demonstrating the use of liquid crystals (LCs) as adaptive lenses for image generation, waveform shaping, and non-mechanical focusing applications. In particular, important achievements have concerned the development of alternative solutions for 3D vision. This work focuses on the design and evaluation of the electro-optic response of a LC-based 2D/3D autostereoscopic display prototype. A strategy for achieving 2D/3D vision has been implemented with a cylindrical LC lens array placed in front of a display; this array acts as a lenticular sheet with a tunable focal length by electrically controlling the birefringence. The performance of the 2D/3D device was evaluated in terms of the angular luminance, image deflection, crosstalk, and 3D contrast within a simulated environment. These measurements were performed with characterization equipment for autostereoscopic 3D displays (angular resolution of 0.03 ).
Resumo:
En esta investigación se ha estudiado el efecto de la variación de la temperatura en la deflexión de firmes flexibles. En primer lugar se han recopilado los criterios existentes de ajuste de la deflexión por efecto de la temperatura. Posteriormente, se ha llevado a cabo un estudio empírico mediante la auscultación de las deflexiones en cinco tramos de carretera con firme flexible y con diferentes espesores de mezclas bituminosas (entre 10 y 30 cm). Las medidas se han efectuado en dos campañas (verano e invierno), tratando de abarcar un amplio rango de temperaturas. En cada campaña, se han llevado a cabo distintas auscultaciones a diferentes temperaturas. Las medidas de cada campaña se han realizado el mismo día. Se han obtenido los coeficientes empíricos de ajuste por temperatura para cada tramo analizado. Además, se ha realizado un estudio teórico mediante la elaboración de diferentes modelos (multicapa elástico lineal, multicapa visco-elástico lineal y elementos finitos) que reproducen la respuesta estructural de los firmes flexibles auscultados. La caracterización mecánica de las mezclas bituminosas se ha realizado mediante ensayos de módulo complejo en laboratorio, a diferentes temperaturas y frecuencias, sobre testigos extraídos en las carreteras estudiadas. Se han calculado los coeficientes teóricos de ajuste por temperatura para cada modelo elaborado y tramo analizado. Finalmente, se ha realizado un estudio comparativo entre los distintos coeficientes de ajuste (existentes, empíricos y teóricos), que ha puesto de manifiesto que, en todos los casos analizados, los coeficientes obtenidos en el modelo de elementos finitos son los que más se aproximan a los coeficientes empíricos (valor de referencia para los tramos analizados). El modelo desarrollado de elementos finitos permite reproducir el comportamiento visco-elástico de las mezclas bituminosas y el carácter dinámico de las cargas aplicadas. Se han utilizado elementos tipo tetraedro isoparamétrico lineal (C3D8R) para el firme y la parte superior del cimiento, mientras que para la parte inferior se han empleado elementos infinitos (CIN3D8). In this research the effect produced by the temperature change on flexible pavements deflection is analysed. First, the existing criteria of deflection adjustment by temperature were collected. Additionally, an empirical analysis was carried out, consisting on deflection tests in five flexible-pavement road sections with different asphalt mix thickness (from 10 to 30 cm). The measures were taken in two seasons (summer and winter) in an effort to register a wide range of temperatures. Different surveys were carried out at different temperatures in each season. The tests of each season were done at the same day. The empirical temperature adjustment factors for every analysed section were obtained. A theoretical study was carried out by developing different models (linear elastic multilayer, linear visco-elastic multilayer and finite elements) that reproduce the structural response of the tested flexible pavements. The mechanical characterization of the asphalt mixes was achieved through laboratory complex-modulus tests at different temperatures and frequencies, using pavement cores from the surveyed roads. The theoretical temperature adjustment factors for each model developed and each section analysed were calculated. Finally, a comparative study among the different adjustment factors (existing, empirical and theoretical) was carried out. It has shown that, in all analysed cases, the factors obtained with the finite elements model are the closest to the empirical factors (reference value for the analysed sections). The finite elements model developed makes it possible to reproduce the visco-elastic behavior of the asphalt mixes and the dynamic nature of the applied loads. Linear isoparametric tetrahedral elements (C3D8R) have been used for the pavement and the subgrade, while infinite elements (CIN3D8) have been used for the foundations.
Resumo:
Arch bridge structural solution has been known for centuries, in fact the simple nature of arch that require low tension and shear strength was an advantage as the simple materials like stone and brick were the only option back in ancient centuries. By the pass of time especially after industrial revolution, the new materials were adopted in construction of arch bridges to reach longer spans. Nowadays one long span arch bridge is made of steel, concrete or combination of these two as "CFST", as the result of using these high strength materials, very long spans can be achieved. The current record for longest arch belongs to Chaotianmen bridge over Yangtze river in China with 552 meters span made of steel and the longest reinforced concrete type is Wanxian bridge which also cross the Yangtze river through a 420 meters span. Today the designer is no longer limited by span length as long as arch bridge is the most applicable solution among other approaches, i.e. cable stayed and suspended bridges are more reasonable if very long span is desired. Like any super structure, the economical and architectural aspects in construction of a bridge is extremely important, in other words, as a narrower bridge has better appearance, it also require smaller volume of material which make the design more economical. Design of such bridge, beside the high strength materials, requires precise structural analysis approaches capable of integrating the combination of material behaviour and complex geometry of structure and various types of loads which may be applied to bridge during its service life. Depend on the design strategy, analysis may only evaluates the linear elastic behaviour of structure or consider the nonlinear properties as well. Although most of structures in the past were designed to act in their elastic range, the rapid increase in computational capacity allow us to consider different sources of nonlinearities in order to achieve a more realistic evaluations where the dynamic behaviour of bridge is important especially in seismic zones where large movements may occur or structure experience P - _ effect during the earthquake. The above mentioned type of analysis is computationally expensive and very time consuming. In recent years, several methods were proposed in order to resolve this problem. Discussion of recent developments on these methods and their application on long span concrete arch bridges is the main goal of this research. Accordingly available long span concrete arch bridges have been studied to gather the critical information about their geometrical aspects and properties of their materials. Based on concluded information, several concrete arch bridges were designed for further studies. The main span of these bridges range from 100 to 400 meters. The Structural analysis methods implemented in in this study are as following: Elastic Analysis: Direct Response History Analysis (DRHA): This method solves the direct equation of motion over time history of applied acceleration or imposed load in linear elastic range. Modal Response History Analysis (MRHA): Similar to DRHA, this method is also based on time history, but the equation of motion is simplified to single degree of freedom system and calculates the response of each mode independently. Performing this analysis require less time than DRHA. Modal Response Spectrum Analysis (MRSA): As it is obvious from its name, this method calculates the peak response of structure for each mode and combine them using modal combination rules based on the introduced spectra of ground motion. This method is expected to be fastest among Elastic analysis. Inelastic Analysis: Nonlinear Response History Analysis (NL-RHA): The most accurate strategy to address significant nonlinearities in structural dynamics is undoubtedly the nonlinear response history analysis which is similar to DRHA but extended to inelastic range by updating the stiffness matrix for every iteration. This onerous task, clearly increase the computational cost especially for unsymmetrical buildings that requires to be analyzed in a full 3D model for taking the torsional effects in to consideration. Modal Pushover Analysis (MPA): The Modal Pushover Analysis is basically the MRHA but extended to inelastic stage. After all, the MRHA cannot solve the system of dynamics because the resisting force fs(u; u_ ) is unknown for inelastic stage. The solution of MPA for this obstacle is using the previously recorded fs to evaluate system of dynamics. Extended Modal Pushover Analysis (EMPA): Expanded Modal pushover is a one of very recent proposed methods which evaluates response of structure under multi-directional excitation using the modal pushover analysis strategy. In one specific mode,the original pushover neglect the contribution of the directions different than characteristic one, this is reasonable in regular symmetric building but a structure with complex shape like long span arch bridges may go through strong modal coupling. This method intend to consider modal coupling while it take same time of computation as MPA. Coupled Nonlinear Static Pushover Analysis (CNSP): The EMPA includes the contribution of non-characteristic direction to the formal MPA procedure. However the static pushovers in EMPA are performed individually for every mode, accordingly the resulted values from different modes can be combined but this is only valid in elastic phase; as soon as any element in structure starts yielding the neutral axis of that section is no longer fixed for both response during the earthquake, meaning the longitudinal deflection unavoidably affect the transverse one or vice versa. To overcome this drawback, the CNSP suggests executing pushover analysis for governing modes of each direction at the same time. This strategy is estimated to be more accurate than MPA and EMPA, moreover the calculation time is reduced because only one pushover analysis is required. Regardless of the strategy, the accuracy of structural analysis is highly dependent on modelling and numerical integration approaches used in evaluation of each method. Therefore the widely used Finite Element Method is implemented in process of all analysis performed in this research. In order to address the study, chapter 2, starts with gathered information about constructed long span arch bridges, this chapter continuous with geometrical and material definition of new models. Chapter 3 provides the detailed information about structural analysis strategies; furthermore the step by step description of procedure of all methods is available in Appendix A. The document ends with the description of results and conclusion of chapter 4.
Resumo:
The Vicario Viaduct is located in the A-44 motorway, in the South-East part of Spain. It crosses a natural gorge, near the town of Ízbor in the province of Granada. A single continuous steel concrete composite deck, 24 m wide and 175 m long, divided in two 87,5 m spans, has been built. The cross section is a single structural steel box, 8,00 m wide and 4,52 m deep. The total width of 24 m is reached adding a strut and tie system each 4,375 m on both sides of the box. The steel parts of the deck were entirely constructed in the workshop and then they were erected on site just behind one of the abutments. Finally a 27.5 m long steel nose was connected to launch the deck. The main problems have been the curved shape of the deck (1420 m radius in plan) producing a non symmetric transverse distribution of reactions on each support and the cantilever reaching 87,5 m long, producing a maximum deflection of 1500 mm
Resumo:
En los últimos años, podemos darnos cuenta de la importancia que tienen las nuevas aplicaciones de vidrio especialmente en edificios turísticos donde el vértigo juega un papel importante en la visita. Sin embargo los sistemas constructivos no tienen un especial interés porque el vidrio laminado está siempre soportado por otro elemento de acero o incluso vidrio en forma de retícula. En la presente tesis voy a desarrollar una nueva solución de elemento autoportante de vidrio de gran tamaño haciendo seguro el uso del elemento para andar en el aire. El sueño de muchos arquitectos ha sido diseñar un edificio completamente transparente y a mí me gustaría contribuir a este sueño empezando a estudiar un forjado de vidrio como elemento estructural horizontal y para ello debemos cumplir requerimientos de seguridad. Uno de los objetivos es lograr un elemento lo más transparente y esbelto posible para el uso de pasarelas en vestíbulos de edificios. Las referencias construidas son bien conocidas, pero por otro lado Universidades europeas estudian continua estudiando el comportamiento del vidrio con diferentes láminas, adhesivos, apilados, insertos, sistemas de laminado, pretensado, pandeo lateral, seguridad post-rotura y muchos más aspectos necesarios. La metodología llevada a cabo en esta tesis ha sido primeramente diseñar un elemento industrial prefabricado horizontal de vidrio teniendo en cuenta todos los conceptos aprendidos en el estado del arte y la investigación para poder predimensionar el elemento. El siguiente paso será verificar el modelo por medio de cálculo analítico, simulación de elementos finitos y ensayos físicos. Para realizar los ensayos hay un paso intermedio teniendo que cambiar la hipótesis de carga uniforme a carga puntal para realizar el ensayo de flexión a 4 puntos normalizado y además cambiar a escala 1:2 para adaptarse al espacio de ensayo y ser viable económicamente. Finalmente compararé los resultados de tensión y deformación obtenidos por los tres métodos para extraer conclusiones. Sin embargo el problema de la seguridad no ha concluido, tendré que demostrar que el sistema es seguro después de que se produzca la rotura y para ello sólo dispongo de los ensayos como medio de demostración. El diseño es el resultado de la evolución de una viga tipo “I”; cuando es pretensada para obtener más resistencia, aparece el problema de pandeo lateral y éste es solucionado con una viga con sección en “T” cuya unión es resuelta con un cajeado longitudinal en la parte inferior del elemento horizontal. Las alas de éste crecen para recoger las cargas superficiales creando a su vez un punto débil en la unión que a su vez se soluciona duplicando la sección “TT” y haciendo trabajar dicho tablero de forma tan óptima como una viga continua. Dicha sección en vidrio como un único elemento pretensado es algo inédito. Además he diseñado unas escuadras metálicas en los extremos de los nervios como apoyo y placa de pretensión, así como una hendidura curva en el centro de los nervios para alojar los tirantes de acero de modo que al pretensar el tirante la placa corrija al menos la deformación por peso propio. Realizados los cambios geométricos de escala y las simplificaciones en el laminado y el adhesivo se programan la extracción de resultados desde 3 estadios diferentes: Sin pretensión y con pretensión de 750 Kg y de 1000Kg en cada nervio. Por cada estadio y por cada uno de los métodos, cálculo, simulación y ensayos, se extraen los datos de deformación y tensión en el punto medio de un nervio con el objetivo de hacer una comparación de resultados para obtener unas conclusiones, siempre en el campo de la elasticidad. Posteriormente incrementaré la carga hasta el momento de la rotura de la placa y después hasta el colapso teniendo en cuenta el tiempo y demostrando una rotura segura. El vidrio no tendrá un comportamiento plástico pero habrá sido controlado su comportamiento frágil manteniendo una carga y una deformación aceptable. ABSTRACT Over the past few years we have realized the importance of the new technologies regarding the application of glass in new buildings, especially those touristic places were the views and the heights are the reason of the visit. However, the construction systems of these glass platforms are not usually as interesting, because the laminated glass is always held by another steel substructure or even a grid-formed glass element. Throughout this thesis I am going to develop a new solution of a self-bearing element with big dimensions made out of glass, ensuring a safe solution to use as an element to walk on the air. The dream of many architects has been to create a building completely transparent, and I would like to contribute to this idea by making a glass slab as a horizontal structural element, for which we have to meet the security requirements. One of the goals is to achieve an element as transparent and slim as possible for the use in walkways of building lobbies. The glass buildings references are well known, but on the other hand the European Universities study the behaviour of the glass with different interlayers, adhesives, laminating systems, stacking, prestressed, buckling, safety, breakage and post-breakage capacity; and many other necessary aspects. The methodology followed in this thesis has been to first create a horizontal industrial prefabricated horizontal element of glass, taking into account all the concepts learned in the state of art and the investigation to be able to predimension this element. The next step will be to verify this model with an analytic calculus, a finite element modelling simulation and physical tests. To fulfil these tests there is an intermediate step, having to change the load hypothesis from a punctual one to make the test with a four points normalized deflexion, and also the scale of the sample was changed to 1:2 to adapt to the space of the test and make it economically possible. Finally, the results of tension and deformation obtained from the three methods have been compared to make the conclusions. However, the problem with safety has not concluded yet, for I will have to demonstrate that this system is safe even after its breakage, for which I can only use physical tests as a way of demonstration. The design is the result of the evolution of a typical “I” beam, which when it is prestressed to achieve more resistance, the effect of buckling overcomes, and this is solved with a “T” shaped beam, where the union is solved with a longitudinal groove on the inferior part of the horizontal element. The boards of this beam grow to cover the superficial loads, creating at the same time a weak point, which is solved by duplicating the section “TT” and therefore making this board work as optimal as a continuous beam. This glass section as a single prestressed element is unique. After the final design of the “π” glass plate was obtained and the composition of the laminated glass and interlayers has been predimensioned, the last connection elements must be contemplated. I have also designed a square steel shoe at the end of the beams, which will be the base and the prestressed board, as well as a curved slot in the centre of the nerves to accommodate the steel braces so that when this brace prestresses the board, at least the deformation due to its self-weight will be amended. Once I made the geometric changes of the scale and the simplifications on the laminating and the adhesive, the extraction on results overcomes from three different stages: without any pretension, with a pretension of 750 kg and with a pretension of 1000 kg on each rib. For each stage and for each one of the methods, calculus, simulation and tests, the deformation datum were extracted to obtain the conclusions, always in the field of the elasticity. Afterwards, I will increase the load until the moment of breakage of this board, and then until the collapse of the element, taking into account the time spent and demonstrating a safe breakage. The glass will not have a plastic behaviour, but its brittle behaviour has been controlled, keeping an acceptable load and deflection.
Resumo:
The mechanical behavior of living murine T-lymphocytes was assessed by atomic force microscopy (AFM). A robust experimental procedure was developed to overcome some features of lymphocytes, in particular their spherical shape and non-adherent character. The procedure included the immobilization of the lymphocytes on amine-functionalized substrates, the use of hydrodynamic effects on the deflection of the AFM cantilever to monitor the approaching, and the use of the jumping mode for obtaining the images. Indentation curves were analyzed according to Hertz's model for contact mechanics. The calculated values of the elastic modulus are consistent both when considering the results obtained from a single lymphocyte and when comparing the curves recorded from cells of different specimens