944 resultados para Cyclic topology
Resumo:
Cyclic four-membered ring peroxides are important high-energy intermediates in a variety of chemi and bioluminescence transformations. Specifically, α-peroxylactones (1,2-dioxetanones) have been considered as model systems for efficient firefly bioluminescence. However, the preparation of such highly unstable compounds is extremely difficult and, therefore, only few research groups have been able to study the properties of these substances. In this study, the synthesis, purification and characterization of three 1,2-dioxetanones are reported and a detailed procedure for the known synthesis of diphenoyl peroxide, another important model compound for the chemical generation of electronically excited states, is provided. For most of these peroxides, the complete spectroscopic characterization is reported here for the first time.
Resumo:
This work addresses the treatment of lower density regions of structures undergoing large deformations during the design process by the topology optimization method (TOM) based on the finite element method. During the design process the nonlinear elastic behavior of the structure is based on exact kinematics. The material model applied in the TOM is based on the solid isotropic microstructure with penalization approach. No void elements are deleted and all internal forces of the nodes surrounding the void elements are considered during the nonlinear equilibrium solution. The distribution of design variables is solved through the method of moving asymptotes, in which the sensitivity of the objective function is obtained directly. In addition, a continuation function and a nonlinear projection function are invoked to obtain a checkerboard free and mesh independent design. 2D examples with both plane strain and plane stress conditions hypothesis are presented and compared. The problem of instability is overcome by adopting a polyconvex constitutive model in conjunction with a suggested relaxation function to stabilize the excessive distorted elements. The exact tangent stiffness matrix is used. The optimal topology results are compared to the results obtained by using the classical Saint Venant–Kirchhoff constitutive law, and strong differences are found.
Resumo:
Abstract This paper describes a design methodology for piezoelectric energy harvester s that thinly encapsulate the mechanical devices and expl oit resonances from higher- order vibrational modes. The direction of polarization determines the sign of the pi ezoelectric tensor to avoid cancellations of electric fields from opposite polarizations in the same circuit. The resultant modified equations of state are solved by finite element method (FEM). Com- bining this method with the solid isotropic material with penalization (SIMP) method for piezoelectric material, we have developed an optimization methodology that optimizes the piezoelectric material layout and polarization direc- tion. Updating the density function of the SIMP method is performed based on sensitivity analysis, the sequen- tial linear programming on the early stage of the opti- mization, and the phase field method on the latter stage
Resumo:
The aim of the present study was to evaluate the effects of the PGF2˛treatment givenat the onset of a synchronization of ovulation protocol using a norgestomet (NORG) earimplant on ovarian follicular dynamics (Experiment 1) and pregnancy per AI (P/AI; Exper-iment 2) in cyclic (CL present) Bos indicus heifers. In Experiment 1, a total of 46 heiferswere presynchronized using two consecutive doses of PGF2˛12 days apart. At first dayof the synchronization protocol the heifers received implants containing 3 mg of NORGand 2 mg of estradiol benzoate (EB). At the same time, heifers were randomly assignedto receive 150 mg of d-cloprostenol (n = 23; PGF2˛) or no additional treatment (n = 23;Control). When the ear implants were removed 8 days later, all heifers received a PGF2˛treatment and 1 mg of EB was given 24 h later. The follicular diameter and interval toovulation were determined by transrectal ultrasonography. No effects of PGF2˛treat-ment on the diameter of the largest follicle present were observed at implant removal(PGF2˛= 9.8 ± 0.4 vs. Control = 10.0 ± 0.3 mm; P = 0.73) or after 24 h (PGF2˛= 11.1 ± 0.4 vs.Control = 11.0 ± 0.4 mm; P = 0.83). No differences in the time of ovulation after ear implantremoval (PGF2˛= 70.8 ± 1.2 vs. Control = 73.3 ± 0.9 h; P = 0.10) or in the ovulation rate(PGF2˛= 87.0 vs. Control = 82.6%; P = 0.64) between treatments were observed. In Experi-ment 2, 280 cyclic heifers were synchronized using the same experimental design describedabove (PGF2˛; n = 143 and Control; n = 137), at random day of the estrous cycle. All heifersreceived 300 IU of equine chorionic gonadotropin (eCG) and 0.5 mg of estradiol cypionate(as ovulatory stimulus) when the NORG ear implants were removed. Timed artificial insem-ination (TAI) was performed 48 h after implant removal and the pregnancy diagnosis wasconducted 30 days later. No effects on the P/AI due to PGF2˛treatment were observed(PGF2˛= 51.7 vs. Control = 57.7%; P = 0.29). In conclusion, PGF2˛treatment at the onset ofNORG-based protocols for the synchronization of ovulation did not alter the ovarian follic-ular responses or the P/AI in cyclic Bos indicus beef heifers synchronized for TAI.
Resumo:
The importance of mechanical aspects related to cell activity and its environment is becoming more evident due to their influence in stem cell differentiation and in the development of diseases such as atherosclerosis. The mechanical tension homeostasis is related to normal tissue behavior and its lack may be related to the formation of cancer, which shows a higher mechanical tension. Due to the complexity of cellular activity, the application of simplified models may elucidate which factors are really essential and which have a marginal effect. The development of a systematic method to reconstruct the elements involved in the perception of mechanical aspects by the cell may accelerate substantially the validation of these models. This work proposes the development of a routine capable of reconstructing the topology of focal adhesions and the actomyosin portion of the cytoskeleton from the displacement field generated by the cell on a flexible substrate. Another way to think of this problem is to develop an algorithm to reconstruct the forces applied by the cell from the measurements of the substrate displacement, which would be characterized as an inverse problem. For these kind of problems, the Topology Optimization Method (TOM) is suitable to find a solution. TOM is consisted of an iterative application of an optimization method and an analysis method to obtain an optimal distribution of material in a fixed domain. One way to experimentally obtain the substrate displacement is through Traction Force Microscopy (TFM), which also provides the forces applied by the cell. Along with systematically generating the distributions of focal adhesion and actin-myosin for the validation of simplified models, the algorithm also represents a complementary and more phenomenological approach to TFM. As a first approximation, actin fibers and flexible substrate are represented through two-dimensional linear Finite Element Method. Actin contraction is modeled as an initial stress of the FEM elements. Focal adhesions connecting actin and substrate are represented by springs. The algorithm was applied to data obtained from experiments regarding cytoskeletal prestress and micropatterning, comparing the numerical results to the experimental ones
Resumo:
The equilibrium magnetic field inside axisymmetric plasmas with inversions on the toroidal current density is studied. Structurally stable non-nested magnetic surfaces are considered. For any inversion in the internal current density the magnetic families define several positive current channels about a central negative one. A general expression relating the positive and negative currents is derived in terms of a topological anisotropy parameter. Next, an analytical local solution for the poloidal magnetic flux is derived and shown compatible with current hollow magnetic pitch measurements shown in the literature. Finally, the analytical solution exhibits non-nested magnetic families with positive anisotropy, indicating that the current inside the positive channels have at least twice the magnitude of the central one.
Resumo:
Actually, transition from positive to negative plasma current and quasi-steady-state alternated current (AC) operation have been achieved experimentally without loss of ionization. The large transition times suggest the use of MHD equilibrium to model the intermediate magnetic field configurations for corresponding current density reversals. In the present work we show, by means of Maxwell equations, that the most robust equilibrium for any axisymmetric configuration with reversed current density requires the existence of several nonested families of magnetic surfaces inside the plasma. We also show that the currents inside the nonested families satisfy additive rules restricting the geometry and sizes of the axisymmetric magnetic islands; this is done without restricting the equilibrium through arbitrary functions. Finally, we introduce a local successive approximations method to describe the equilibrium about an arbitrary reversed current density minimum and, consequently, the transition between different nonested topologies is understood in terms of the eccentricity of the toroidal current density level sets.
Resumo:
The objective of this study was to investigate the effects of eCG and temporary calf removal (TCR) associated with progesterone (P4) treatment on the dynamics of follicular growth, CL size, and P4 concentrations in cyclic (n ¼ 36) and anestrous (n ¼ 30) Nelore cows. Cyclic (C) and anestrous (A) cows were divided into three groups. The control group received 2 mg of estradiol benzoate via intramuscular (IM) injection and an intravaginal device containing 1.9 g of P4 on Day 0. On Day 8, the device was removed, and the animals received 12.5 mg of dinoprost tromethamine IM. After 24 hours, the animals received 1 mg of estradiol benzoate IM. In the eCG group, cows received the same treatment described for the control group but also received 400 UI of eCG at the time of device removal. In the TCR group, calves were separated from the cows for 56 hours after device removal. Ultrasound exams were performed every 24 hours after device removal until the time of ovulation and 12 days after ovulation to measure the size of the CL. On the same day as the CL measurement, blood was collected to determine the plasma P4 level. Statistical analyses were performed with a significance level of P ≤ 0.05. In cyclic cows, the presence of the CL at the beginning of protocol resulted in a smaller follicle diameter at the time of device removal (7.4 ± 0.3 mm in cows with CL vs. 8.9 ± 0.4 mm in cows without CL; P ¼ 0.03). All cows ovulated within 72 hours after device removal. Anestrous cows treated with eCG or TCR showed follicle diameter at fixed-timed artificial insemination (A-eCG 10.2 ± 0.3 and A-TCR 10.3 ± 0.5 mm) and follicular growth rate (A-eCG 1.5 ± 0.2 and A-TCR 1.3 ± 0.1 mm/day) similar to cyclic cows (C-eCG 11.0 ± 0.6 and C-TCR 12.0 ± 0.5 mm) and (C-eCG 1.4 ± 0.2 and C-TCR 1.6 ± 0.2 mm/day, respectively; P ≤ 0.05). Despite the similarities in CL size, the average P4 concentration was higher in the A-TCR (9.6 ± 1.4 ng/mL) than in the A-control (4.0 ± 1.0 ng/mL) and C-TCR (4.4 ± 1.0 ng/mL) groups (P < 0.05). From these results, we conclude that eCG treatment and TCR improved the fertility of anestrous cows by providing follicular growth rates and size of dominant follicles similar to cyclic cows. Additionally, TCR increases the plasma concentrations of P4 in anestrous cows
Resumo:
Small scale fluid flow systems have been studied for various applications, such as chemical reagent dosages and cooling devices of compact electronic components. This work proposes to present the complete cycle development of an optimized heat sink designed by using Topology Optimization Method (TOM) for best performance, including minimization of pressure drop in fluid flow and maximization of heat dissipation effects, aiming small scale applications. The TOM is applied to a domain, to obtain an optimized channel topology, according to a given multi-objective function that combines pressure drop minimization and heat transfer maximization. Stokes flow hypothesis is adopted. Moreover, both conduction and forced convection effects are included in the steady-state heat transfer model. The topology optimization procedure combines the Finite Element Method (to carry out the physical analysis) with Sequential Linear Programming (as the optimization algorithm). Two-dimensional topology optimization results of channel layouts obtained for a heat sink design are presented as example to illustrate the design methodology. 3D computational simulations and prototype manufacturing have been carried out to validate the proposed design methodology.
Resumo:
Aim of this thesis was to further extend the applicability of the Fourier-transform (FT) rheology technique especially for non-linear mechanical characterisation of polymeric materials on the one hand and to investigated the influence of the degree of branching on the linear and non-linear relaxation behaviour of polymeric materials on the other hand. The latter was achieved by employing in particular FT-rheology and other rheological techniques to variously branched polymer melts and solutions. For these purposes, narrowly distributed linear and star-shaped polystyrene and polybutadiene homo-polymers with varying molecular weights were anionically synthesised using both high-vacuum and inert atmosphere techniques. Furthermore, differently entangled solutions of linear and star-shaped polystyrenes in di-sec-octyl phthalate (DOP) were prepared. The several linear polystyrene solutions were measured under large amplitude oscillatory shear (LAOS) conditions and the non-linear torque response was analysed in the Fourier space. Experimental results were compared with numerical predictions performed by Dr. B. Debbaut using a multi-mode differential viscoelastic fluid model obeying the Giesekus constitutive equation. Apart from the analysis of the relative intensities of the harmonics, a detailed examination of the phase information content was developed. Further on, FT-rheology allowed to distinguish polystyrene melts and solutions due to their different topologies where other rheological measurements failed. Significant differences occurred under LAOS conditions as particularly reflected in the phase difference of the third harmonic, ¶3, which could be related to shear thinning and shear thickening behaviour.
Resumo:
Background/Objectives: Sleep has been shown to enhance creativity, but the reason for this enhancement is not entirely known. There are several different physiological states associated with sleep. In addition to rapid (REM) and non-rapid eye movement (NREM) sleep, NREM sleep can be broken down into Stages (1-4) that are characterized by the degree of EEG slow wave activity. In addition, during NREM sleep there are transient but cyclic alternating patterns (CAP) of EEG activity and these CAPs can also be divided into three subtypes (A1-A3) according to speed of the EEG waves. Differences in CAP ratios have been previously linked to cognitive performances. The purpose of this study was to learn the relationship CAP activity during sleep and creativity. Methods: The participants were 8 healthy young adults (4 women), who underwent 3 consecutive nights of polysomnographic recording and took the Abbreviated Torrance Test for Adults (ATTA) on the 2 and 3rd mornings after the recordings. Results: There were positive correlations between Stage 1 of NREM sleep and some measures of creativity such as fluency (R= .797; p=.029) and flexibility ( R=.43; p=.002), between Stage 4 of Non-REM sleep and originality (R= .779; p=.034) and a global measure of figural creativity (R= .758; p=.040). There was also a negative correlation between REM sleep and originality (R= -.827; p= .042) . During NREM sleep the CAP rate, which in young people is primarily the A1 subtype, also correlated with originality (R= .765; p =.038). Conclusions: NREM sleep is associated with low levels of cortical arousal and low cortical arousal may enhance the ability of people to access to the remote associations that are critical for creative innovations. In addition, A1 CAP activity reflects frontal activity and the frontal lobes are important for divergent thinking, also a critical aspect of creativity.
The C-4-Dicarboxylate carriers DcuB and DctA of Escherichia coli: function as cosensors and topology
Resumo:
Das fakultativ anaerobe Enterobakterium Escherichia coli nutzt C4-Dicarboxylate sowohl unter aeroben als auch anaeroben Bedingungen als Kohlenstoff- und Energiequelle. Die Aufnahme der C4-Dicarboxylaten und die Energiekonservierung mittels Fumaratatmung wird durch das Zweikomponentensystem DcuSR reguliert. Die Sensorhistidinkinase DcuS und der nachgeschaltete Responseregulator DcuR aktivieren bei Verfügbarkeit von C4-Dicarboxylaten die Expression der Gene für den Succinat Transporter DctA, den anaeroben Fumarat/Succinat Antiporter DcuB, die Fumarase B sowie die Fumaratreduktase FrdABCD. Die Transportproteine DctA und DcuB wiederum regulieren die Expression der DcuSR-abhängigen Gene negativ. Fehlen von DctA oder DcuB resultiert bereits ohne Effektor in einer maximalen Expression von dctA bzw. dcuB. Durch gerichtete und ungerichtete Mutagenese wurde gezeigt, dass die Transportfunktion des Carriers DcuB unabhängig von seiner regulatorischen Funktion ist. DcuB kann daher als Cosensor des DcuSR Systems angesehen werden.rnUnter Verwendung von Reportergenfusionen von C-terminal verkürzten Konstrukten von DcuB mit der Alkalischen Phosphatase und der β-Galactosidase wurde die Topologie des Multitransmembranproteins DcuB bestimmt. Zusätzlich wurde die Zugänglichkeit bestimmter Aminosäurereste durch chemische Modifikation mit membran-durchlässigen und membran-undurchlässigen Thiolreagenzien untersucht. Die erhaltenen Ergebnisse deuten auf die Existenz eines tief in die Membran reichenden, hydrophilen Kanal hin, welcher zum Periplasma hin geöffnet ist. Mit Hilfe der Topologie-Studien, des Hydropathie-Blots und der Sekundärstruktur-Vorhersage wurde ein Modell des Carriers erstellt. DcuB besitzt kurze, periplasmatisch liegende Proteinenden, die durch 12 Transmembranhelices und zwei große hydrophile Schleifen jeweils zwischen TM VII/VIII und TM XI/XII verbunden sind. Die regulatorisch relevanten Reste K353, T396 und D398 befinden sich innerhalb von TM XI sowie auf der angrenzenden cytoplasmatischen Schleife XI-XII. Unter Berücksichtigung der strukturellen und funktionellen Aspekte wurde ein Regulationsmodell erstellt, welches die gemeinsam durch DcuB und DcuS kontrollierte C4-Dicarboxylat-abhängige Genexpression darstellt. rnDer Effekt von DctA und DcuSR auf die Expression einer dctA´-´lacZ Reportergenfusion und auf die aerobe C4-Dicarboxylat-Aufnahme wurde untersucht. In-vivo FRET-Messungen weisen auf eine direkte Wechselwirkung zwischen dem Carrier DctA und dem Sensor DcuS hin. Dieses Ergebnis stützt die Theorie der Regulation von DcuS durch C4-Dicarboxylate und durch die Cosensoren DctA bzw. DcuB mittels direkter Protein-Protein Interaktion.rn
Resumo:
Efficient energy storage and conversion is playing a key role in overcoming the present and future challenges in energy supply. Batteries provide portable, electrochemical storage of green energy sources and potentially allow for a reduction of the dependence on fossil fuels, which is of great importance with respect to the issue of global warming. In view of both, energy density and energy drain, rechargeable lithium ion batteries outperform other present accumulator systems. However, despite great efforts over the last decades, the ideal electrolyte in terms of key characteristics such as capacity, cycle life, and most important reliable safety, has not yet been identified. rnrnSteps ahead in lithium ion battery technology require a fundamental understanding of lithium ion transport, salt association, and ion solvation within the electrolyte. Indeed, well-defined model compounds allow for systematic studies of molecular ion transport. Thus, in the present work, based on the concept of ‘immobilizing’ ion solvents, three main series with a cyclotriphosphazene (CTP), hexaphenylbenzene (HBP), and tetramethylcyclotetrasiloxane (TMS) scaffold were prepared. Lithium ion solvents, among others ethylene carbonate (EC), which has proven to fulfill together with pro-pylene carbonate safety and market concerns in commercial lithium ion batteries, were attached to the different cores via alkyl spacers of variable length.rnrnAll model compounds were fully characterized, pure and thermally stable up to at least 235 °C, covering the requested broad range of glass transition temperatures from -78.1 °C up to +6.2 °C. While the CTP models tend to rearrange at elevated temperatures over time, which questions the general stability of alkoxide related (poly)phosphazenes, both, the HPB and CTP based models show no evidence of core stacking. In particular the CTP derivatives represent good solvents for various lithium salts, exhibiting no significant differences in the ionic conductivity σ_dc and thus indicating comparable salt dissociation and rather independent motion of cations and ions.rnrnIn general, temperature-dependent bulk ionic conductivities investigated via impedance spectroscopy follow a William-Landel-Ferry (WLF) type behavior. Modifications of the alkyl spacer length were shown to influence ionic conductivities only in combination to changes in glass transition temperatures. Though the glass transition temperatures of the blends are low, their conductivities are only in the range of typical polymer electrolytes. The highest σ_dc obtained at ambient temperatures was 6.0 x 10-6 S•cm-1, strongly suggesting a rather tight coordination of the lithium ions to the solvating 2-oxo-1,3-dioxolane moieties, supported by the increased σ_dc values for the oligo(ethylene oxide) based analogues.rnrnFurther insights into the mechanism of lithium ion dynamics were derived from 7Li and 13C Solid- State NMR investigations. While localized ion motion was probed by i.e. 7Li spin-lattice relaxation measurements with apparent activation energies E_a of 20 to 40 kJ/mol, long-range macroscopic transport was monitored by Pulsed-Field Gradient (PFG) NMR, providing an E_a of 61 kJ/mol. The latter is in good agreement with the values determined from bulk conductivity data, indicating the major contribution of ion transport was only detected by PFG NMR. However, the μm-diffusion is rather slow, emphasizing the strong lithium coordination to the carbonyl oxygens, which hampers sufficient ion conductivities and suggests exploring ‘softer’ solvating moieties in future electrolytes.rn