984 resultados para Cultivars - Narrow row spacing
Resumo:
Antioxidant activities and total phenolic content (TPC) were analyzed in ethanol extracts of 11 marigold cultivars grown in Thailand. Antioxidant activity assays performed in this study were the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical cation scavenging activity, ferric ion reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, oxygen radical absorbance activity (ORAC), and superoxide anion radical scavenging activity (SRSA) assays. ‘Optiva Orange’ showed the best activity in the ORAC assay and in % SRSA, as well as the highest content of lutein (20.59 mg), gallic acid (25.77 mg), and quercetin (12.61 mg) per gram dry marigold petal among the 11 cultivars. Furthermore, ‘Optiva Orange’ showed the highest lutein yield per plant, as compared to other cultivars. In contrast, ‘Rodeo Gold’ showed the highest activity by ABTS testing (0.92 mmol of trolox/g dry sample), as well as an 89.90% inhibition of DPPH. Lutein content showed a positive correlation with TPC and all antioxidant activity assays. In conclusion, ‘Optiva Orange’ and ‘Rodeo Gold’ could be utilized as a good lutein source for functional food products and cosmetics.
Resumo:
Abstract The reactions leading to the formation of precursors of chocolate flavor are performed by endogenous enzymes present in the cocoa seed. Polyphenol oxidase (PPO) presence and activity during fermentation of cocoa beans is responsible for the development of flavor precursors and is also implicated in the reduction of bitterness and astringency. However, the reliability of cocoa enzyme activities is complicated due to variations in different genotypes, geographical origins and methods of fermentation. In addition, there is still a lack of systematic studies comparing different cocoa cultivars. So, the present study was designed to characterize the activity of PPO in the pulp and seeds of two cocoa cultivars, PH 16 and TSH 1188. The PPO activity was determined spectrophotometrically and characterized as the optimal substrate concentration, pH and temperature and the results were correlated with the conditions during the fermentation process. The results showed the specificity and differences between the two cocoa cultivars and between the pulp and seeds of each cultivar. It is suggested that specific criteria must be adopted for each cultivar, based on the optimal PPO parameters, to prolong the period of maximum PPO activity during fermentation, contributing to the improvement of the quality of cocoa beans.
Resumo:
Excess salts in the root zone inhibit water uptake by plants, affect nutrient uptake and may result in toxicities due to individual salts in the soil solution. Excess exchangeable sodium in the soil may destroy the soil structure to a point where water penetration and root aeration become impossible. Sodium is also toxic to many plants. Beans (Phaseolus vulgaris L.) are consumed as protein source in northeastern Brazil, although little is known about common bean cultivar tolerance to salinity. The germination of bean cultivars under salt stress was studied. The cultivars 'Carioca' and 'Mulatinho' were submitted to germination test in a germinator at 25ºC, at the Seed Analysis Laboratory of the Brazilian Agricultural Research Corporation unit in the Semi- Arid region (Embrapa Semi Árido), Petrolina, Pernambuco State. These seeds were germinated on "germitest" papers imbibed in distilled water or in 10, 50, 100 e 200 mol.m-3sodium chloride (NaCl) solutions. At the first and second counts of the germination test, normal seedlings were counted, measured, weighed and dried, supplying data for vigor, total germination, fresh matter weight and dry matter weight and seedlings length. Total protein was quantified in cotyledons at 3, 6 and 9 days after sowing. The results indicated that the NaCl content influenced seed germination and concentrations above 50 mol.m-3 decreased germination and seedling growth.
Resumo:
Brachiaria species normally show a double seed dormancy mechanism, mainly on fresh-harvested seeds, leading to germination percentages lower than those of viability detected by tetrazolium test (TZ) and causing problems as to storage, trading and seed inspection activities. The adoption of the methodology to detect the constants of the viability equation (high storage temperatures and fixed moisture contents) made feasible in this research to isolate the effects of 40, 50 and 65°C on B. brizantha cultivars Marandu, Mulato 1 and Mulato 2 seed dormancy releasing, after storage with moisture contents ranging from 1.9 and 17.8%. Seed samples presented high dormancy levels, detected by TZ and it was complete and partially released by chemical scarification and accelerated ageing test, respectively. No statistical differences were observed as to the speed of germination (T50); however, differences among cultivars were detected as to number of seed per gram. Sorption and desorption isotherm curves were similar for the cultivars. Seed dormancy releasing was better achieved at 40 and 50°C with mc ranging from 7.6 to 10.8%. The temperature of 50°C appears to be adequate for seed dormancy releasing in all mc analyzed. No significant seed dormancy releasing result was observed at 65°C. The cultivar Marandu presented the highest storability throughout the experiment.
Resumo:
All-electron partitioning of wave functions into products ^core^vai of core and valence parts in orbital space results in the loss of core-valence antisymmetry, uncorrelation of motion of core and valence electrons, and core-valence overlap. These effects are studied with the variational Monte Carlo method using appropriately designed wave functions for the first-row atoms and positive ions. It is shown that the loss of antisymmetry with respect to interchange of core and valence electrons is a dominant effect which increases rapidly through the row, while the effect of core-valence uncorrelation is generally smaller. Orthogonality of the core and valence parts partially substitutes the exclusion principle and is absolutely necessary for meaningful calculations with partitioned wave functions. Core-valence overlap may lead to nonsensical values of the total energy. It has been found that even relatively crude core-valence partitioned wave functions generally can estimate ionization potentials with better accuracy than that of the traditional, non-partitioned ones, provided that they achieve maximum separation (independence) of core and valence shells accompanied by high internal flexibility of ^core and Wvai- Our best core-valence partitioned wave function of that kind estimates the IP's with an accuracy comparable to the most accurate theoretical determinations in the literature.
Resumo:
Catharanthlls rosellS (L.) G Don is a commercially significant flower species and in addition is the only source of the monoterpenoid indole alkaloids (MIA) vinblastine and vincristine, which are key pharmaceutical compounds that are used to combat a number of different cancers. Therefore, procurement of the antineoplastic agents is difficult but essential procedure. Alternatively, CatharanthllS tissue cultures have been investigated as a source of these agents; however they do not produce vindoline, which is an obligate precursor to vinblastine and vincristine. The interest in developing high MIA cultivars of Catharantlws rosellS has prompted metabolic profiling studies to determine the variability of MIA accumulation of existing flowering cultivars, with particular focus on the vindoline component ofthe pathway. Metabolic profiling studies that used high performance liquid chromatography of MIAs from seedlings and young leaf extracts from 50 different flowering cultivars showed that, except for a single low vindoline cultivar (Vinca Mediterranean DP Orchid), they all accumulate similar levels of MIAs. Further enzymatic studies with extracts from young leaves and from developing seedlings showed that the low vindoline cultivar has a IO-fold lower tabersonine-16-hydroxylase activity than those of CatharanthllS rosellS cv Little Delicata. Additionally, studies aimed at metabolic engineering ofvindoline bios}l1thesis in Catharanthus rosellS hairy root cultures have been performed by expressing the last step in vindoline biosynthesis [Dcacetylvindoline-4-0- acetyltransferase (DAT)]. Enzymatic profiling studies with transformed hairy roots have confirmed that over-expressing DAT leads to lines with high levels of O-acetyltransferase activity when compared to non-expressing hairy roots. One particular DA T over111 expressing hairy root culture (line 7) contained 200 times the OAT activity than leaves of control lines. Additional MIA analyses revealed that DAT over-expressing hairy roots have an altered alkaloid profile with significant variation in the accumulation of h6rhammericine. Further analysis of transformed hairy root line 7 suggests a correlation between the expression of OAT activity and h6rhammericine accumulation with root maturation. These studies show that metabolic and selective enzymatic profiling can enhance our ability to search for relevant MIA pathway mutants and that genetic engineering with appropriate pathway genes shows promise as a tool to modify the MIA profile of Catharanthus roseus.
Resumo:
Niagara Peninsula of Ontario is the largest viticultural area in Canada. Although it is considered to be a cool and wet region, in the last decade many water stress events occurred during the growing seasons with negative effects on grape and wine quality. This study was initiated to understand and develop the best strategies for water management in vineyards and those that might contribute to grape maturity advancement. The irrigation trials investigated the impact of time of initiation (fruit set, lag phase and veraison), water replacement level based on theoretical loss through crop evapotranspiration (ETc; 100,50 and 25%) and different irrigation strategies [partial root zone drying (PRD) versus regulated deficit irrigation (RD!)] on grape composition and wine sensory profiles. The irrigation experiments were conducted in a commercial vineyard (Lambert Vineyards Inc.) located in Niagara-on-the-Lake, Ontario, from 2005 through 2009. The two experiments that tested the combination of different water regimes and irrigation time initiation were set up in a randomized block design as follows: Baco noir - three replicates x 10 treatments [(25%, 50% and 100% of ETc) x (initiation at fruit set, lag phase and veraison) + control]; Chardonnay - three replicates x seven treatments [(25%, 50% and 100% of ETc) x (initiation at fruit set and veraison) + control]. The experiments that tested different irrigation strategies were set up on two cultivars as follows: Sauvignon blanc - four replicates x four treatments [control, fully irrigated (100% ETc), PRD (100% ETc) and RDI (25% ETc)]; Cabemet Sauvignon - four replicates x five treatments [control, fully irrigated (100% ETc), PRD (100% ETc), RDI (50% ETc) and RDI (25% ETc)]. The controls in each experiment were nonirrigated. The irrigation treatments were compared for many variables related to soil water status, vine physiology, berry composition, wine sensory profile, and hormone composition [(abscisic acid (ABA) and its catabolites]. Soil moisture profile was mostly affected by irrigation treatments between 20 and 60 em depth depending on the grapevine cultivar and the regime of water applied. Overall soil moisture was consistently higher throughout the season in 100 and 50% ETc compare to the control. Transpiration rates and leaf temperature as well as shoot growth rate were the most sensitive variables to soil water status. Drip irrigation associated with RDI treatments (50% ETc and 25% ETc) had the most beneficial effects on vine physiology, fruit composition and wine varietal typicity, mainly by maintaining a balance between vegetative and reproductive parts of the vine. Neither the control nor the 100 ETc had overall a positive effect on grape composition and wine sensory typicity. The time of irrigation initiation affected the vine physiology and grape quality, the most positive effect was found in treatments initiated at lag phase and veraison. RDI treatments were overall more consistent in their positive effect on grape composition and wine varietal typicity comparing to PRD treatment. The greatest difference between non-irrigated and irrigated vines in most of the variables studied was found in 2007, the driest and hottest season of the experimental period. Soil water status had a greater and more consistent effect on red grapevine cultivars rather than on white winegrape cultivars. To understand the relationships among soil and plant water status, plant physiology and the hormonal profiles associated with it, abscisic acid (ABA) and its catabolites [phaseic acid (PA), dihydrophaseic acid (DPA), 7-hydroxy-ABA (TOH-ABA), 8' -hydroxy-ABA, neophaseic acid and abscisic acid glucose ester (ABA-GE)] were analyzed in leaves and berries from the Baco noir and Chardonnay irrigation trials over two growing seasons. ABA and some of its catabolites accurately described the water status in the vines. Endogenous ABA and some of its catabolites were strongly affected in Baco noir and Chardonnay by both the water regime (i.e. ET level) and timing of irrigation initiation. Chardonnay grapevines produced less ABA in both leaves and berries compared to Baco noir, which indicated that ABA synthesis is also cultivar dependant. ABA-GE was the main catabolite in treatments with high water deficits, while PA and DPA were higher in treatments with high water status, suggesting that the vine produced more ABA-GE under water deficits to maintain rapid control of the stomata. These differences between irrigation treatments with respect to ABA and catabolites were particularly noticeable in the dry 2007 season. Two trials using exogenous ABA investigated the effect of different concentrations of ABA and organs targeted for spraying, on grape maturation and berry composition of Cabemet Sauvignon grapevines, in two cool and wet seasons (2008-2009). The fIrst experiment consisted of three replicates x three treatments [(150 and 300 mg/L, both applications only on clusters) + untreated control] while the second experiment consisted in three replicates x four treatments [(full canopy, only clusters, and only leaves sprayed with 300 ppm ABA) + untreated control]. Exogenous ABA was effective in hastening veraison, and improving the composition of Cabemet Sauvignon. Ability of ABA to control the timing of grape berry maturation was dependant on both solution concentration and the target organ. ABA affected not only fruit composition but also yield components. Berries treated with ABA had lower weight and higher skin dry mass, which constitutes qualitative aspects desired in the wine grapes. Temporal advancement of ripening through hormonal control can lead to earlier fruit maturation, which is a distinct advantage in cooler areas or areas with a high risk of early frost occurrence. Exogenous ABA could provide considerable benefits to wine industry in terms of grape composition, wine style and schedule activities in the winery, particularly in wet and cool years. These trials provide the ftrst comprehensive data in eastern North America on the response of important hybrid and Vitis vinifera winegrape cultivars to irrigation management. Results from this study additionally might be a forward step in understanding the ABA metabolism, and its relationship with water status. Future research should be focused on ftnding the ABA threshold required to trigger the ripening process, and how this process could be controlled in cool climates.
Resumo:
This study analyzed the use of two viticultural practices: “crop level” (half crop; HC, and full crop; FC) and “hang times”, and their impact on the composition of four grape cultivars; Pinot gris, Riesling, Cabernet Franc and Cabernet Sauvignon from the Niagara Region and wine volatile composition by GC-MS. It was hypothesized that keeping a full crop with a longer hang time would have a greater impact on wine quality than reducing the crop level. In all cultivars, a reduction of crop level induced reductions in yield, clusters per vine and crop load, with increases in Brix. Extended hang time also increased Brix related to desiccation. The climatic conditions at harvest had an impact on hang time effects. The GC-MS analysis detected the presence of 30 volatile components in the wine, with different odour activity values. Harvest time had a positive impact than crop reduction in almost all compounds.
Resumo:
La phytoextraction représente une solution environnementale prometteuse face au problème de contamination des sols en éléments traces (É.T). La présente étude s’intéresse aux différences intra et interspécifiques (S. purpurea, S. dasyclados, S. miyabeana) de trois cultivars de saule lorsqu’ils sont utilisés pour la phytoextration de six É.T. (As, Cd, Cu, Ni, Pb et Zn). Les objectifs sont (i) décrire les variations intrapécifiques du cultivar FISH CREEK (S. purpurea) lorsqu’il est utilisé pour la phytoextraction sur deux sites d’étude; et (ii) décrire les variations intra et interspécifiques des cultivars FISH CREEK (S. purpurea), SV1 (S. dasyclados) et SX67 (S. miyabeana) lorsqu’ils sont utilisés pour la phytoextraction d’un site d’étude. Les indicateurs de variations intra et interspécifiques sélectionnés sont les suivants : la biomasse totale, les concentrations en É.T. extraits et les facteurs de translocation (x ̅ pondérée des conc. É.T. dans les parties aériennes / conc. É.T. dans les racines). La contribution des propriétés du sol (degré de contamination, caractéristiques physicochimiques) à la phytoextraction a été évaluée. Les cultivars ont présenté des variations interspécifiques significatives. Cependant, les variations intraspécifiques sur un site d’étude étaient parfois plus importantes que celles mesurées entre les trois différents cultivars. L’amplitude des variations intraspécifiques que présentent le cultivar FISH CREEK sur deux sites d’étude est attribuée à l’influence du pH, de la minéralogie et au contenu en matière organique, lesquelles diffèrent entre les deux sites. Il a aussi été démontré que la phytoextraction des É.T. n’était pas systématiquement corrélée de façon positive avec le degré de contamination. Cela suggère que les concentrations en É.T. mesurées dans le sol ne peuvent pas expliquer à elles seules la variation des concentrations mesurées dans les tissus. L’implication des mécanismes de rétention dans le sol semblent être davantage responsable des variations observées. La compartimentation des É.T. suggère que le saule est efficace pour l’extraction du Cd et du Zn et qu’il est efficace pour la phytostabilisation de l’As, du Cu, du Ni, et du Pb. En ce qui concerne les quantités extraites, le cultivar FISH CREEK semble le plus performant dans la présente étude.
Resumo:
Mon mémoire de maîtrise a été réalisé dans le cadre du projet Génorem (www.genorem.ca), un projet multidisciplinaire qui réunit différents chercheurs de l'Université de Montréal et de l'Université McGill dans le but d'améliorer les techniques utilisées en bioremédiation. Dans le cadre de l'étude, des saules à croissance rapide (Salix sp.) ont été utilisés comme plantes modèles dans l'étude. Ainsi, 11 cultivars de saule ont été suivis afin de déterminer leur potentiel à produire un bon rendement de biomasse, à tolérer des conditions de stress sévère causé par la présence de HAPs (hydrocarbures aromatiques polycycliques) , BPCs (biphényles polychlorés) et d'hydrocarbures pétroliers C10-C50. L'expérimentation consistait en une plantation de saule à forte densité qui a été mise en place en 2011 sur le site d'une ancienne industrie de pétrochimie à Varennes, dans le sud du Québec. Les boutures des génotypes sélectionnés ont été plantées sur une superficie d'environ 5000 m2. Les plantes ont été suivies pendant les deux saisons de croissance suivant le recépage et une série de paramètres de croissance et de mesures physiologiques ont été récoltés (surface foliaire, taux de chlorophylle, conductance stomatique et statut nutritionnel) dans le but d'évaluer et de comparer les performances de chaque génotype sur un sol pollué. Les analyses statistiques ont démontré que le cultivar S. miyabeana (SX61) était le meilleur producteur de biomasse sur le site contaminé, tandis que S. nigra (S05) et S. acutifolia (S54) présentaient la meilleure capacité photosynthétique. S. dasyclados (SV1), S. purpurea (‘Fish Creek’) et S. caprea (S365) ont semblé particulièrement affectés par la présence de contaminants. La capacité d'établissement et la croissance de S. nigra (S05), S. eriocephala (S25) and S. purpurea x S. miyabeana (‘Millbrook’) indiquent une tolérance globale supérieure à la pollution . Cette analyse comparative des différentes réponses physiologiques des saules cultivés sur un sol contaminé pourra guider le processus de sélection de plantes et les techniques de bioremédiation dans les futurs projets de phytoremédiation.
Resumo:
En 2011, cinq (5) cultivars de saules ont été sélectionnés pour leur rendement en biomasse. Ils ont été plantés sur quatre sites de la province du Québec et ont été maintenus selon le protocole de la culture intensive sur courtes rotations (CICR) afin de déterminer leur potentiel pour la bioénergie dans des environnements contrastés. La composition et l’anatomie du bois de ces cultivars ont été caractérisées et comparés en fonction des conditions environnementales caractéristiques de chaque site. La hauteur et le diamètre à la base des plantes diffèrent selon les sites. Ainsi, les cultivars répondent de façon spécifique aux conditions pédoclimatiques dans lesquelles ils sont cultivés. L’effet de l’environnement n’a pas été mis en évidence sur la teneur en lignine des cultivars. Cependant, un effet génotypique a pu être constaté soulignant l’importance de la sélectivité des cultivars. La densité du bois a étonnamment conservé la même hiérarchie génotypique entre les sites. À l’opposé, l’anatomie du bois présente des différences notamment au niveau des caractéristiques des fibres et des vaisseaux. Une forte teneur en polyphénols ainsi que des fibres moins larges et des vaisseaux plus nombreux ont été observés sur le site dont le bois est le plus dense supposant l’effet probable d’un stress abiotique. De plus, deux fois plus de fibres gélatineuses, fibres riches en cellulose, ont été identifiées sur ce site montrant un intérêt pour la production de bioéthanol.
Resumo:
Slab and cluster model spin-polarized calculations have been carried out to study various properties of isolated first-row transition metal atoms adsorbed on the anionic sites of the regular MgO(100) surface. The calculated adsorption energies follow the trend of the metal cohesive energies, indicating that the changes in the metal-support and metal-metal interactions along the series are dominated by atomic properties. In all cases, except for Ni at the generalized gradient approximation level, the number of unpaired electron is maintained as in the isolated metal atom. The energy required to change the atomic state from high to low spin has been computed using the PW91 and B3LYP density-functional-theory-based methods. PW91 fails to predict the proper ground state of V and Ni, but the results for the isolated and adsorbed atom are consistent within the method. B3LYP properly predicts the ground state of all first-row transition atom the high- to low-spin transition considered is comparable to experiment. In all cases, the interaction with the surface results in a reduced high- to low-spin transition energy.
Resumo:
In this venture three distinct class of catalysts such as, pillared clays and transition metal loaded pillared clays , porous clay heterostructures and their transition metal loaded analogues and DTP supported on porous clay heterostructures etc. were prepared and characterized by various physico chemical methods. The catalytic activities of prepared catalysts were comparatively evaluated for the industrially important alkylation, acetalization and oxidation reactions.The general conclusions drawn from the present investigation are Zirconium, iron - aluminium pillared clays were synthesized by ion exchange method and zirconium-silicon porous heterostructures were Summary and conclusions 259 prepared by intergallery template method. Transition metals were loaded in PILCs and PCHs by wet impregnation method. Textural and acidic properties of the clays were modified by pillaring and post pillaring modifications. The shift in 2θ value to lower range and increase in d (001) spacing indicate the success of pillaring process. Surface area, pore volume, average pore size etc. increased dramatically as a result of pillaring process. Porous clay heterostructures have higher surface area, pore volume, average pore diameter and narrow pore size distribution than that of pillared clays. The IR spectrum of PILCs and PCHs are in accordance with literature without much variation compared to parent montmorillonite which indicate that basic clay structure is retained even after modification. The silicon NMR of PCHs materials have intense peaks corresponding to Q4 environment which indicate that mesoporous silica is incorporated between clay layers. Thermo gravimetric analysis showed that thermal stability is improved after the pillaring process. PCH materials have higher thermal stability than PILCs. In metal loaded pillared clays, up to 5% metal species were uniformly dispersed (with the exception of Ni) as evident from XRD and TPR analysis. Chapter 9 260 Impregnation of transition metals in PILCs and PCHs enhanced acidity of catalysts as evident from TPD of ammonia and cumene cracking reactions. For porous clay heterostructures the acidic sites have major contribution from weak and medium acid sites which can be related to the Bronsted sites as evident from TPD of ammonia. Pillared clays got more Lewis acidity than PCHs as inferred from α- methyl styrene selectivity in cumene cracking reaction. SEM images show that layer structure is preserved even after modification. Worm hole like morphology is observed in TEM image of PCHs materials In ZrSiPCHS, Zr exists as Zr 4+ and is incorporated to silica pillars in the intergallary of clay layers as evident from XPS analysis. In copper loaded zirconium pillared clays, copper exists as isolated species with +2 oxidation state at lower loading. At higher loading, Cu exists as clusters as evident from reduction peak at higher temperatures in TPR. In vanadium incorporated PILCs and PCHs, vanadium exist as isolated V5+ in tetrahedral coordination which is confirmed from TPR and UVVis DRS analysis. In cobalt loaded PCHs, cobalt exists as CoO with 2+ oxidation state as confirmed from XPS. Cerium incorporated iron aluminium pillared clay was found to be the best catalyst for the hydroxylation of phenol in aqueous media due to the additional surface area provided by ceria mesopores and its redox properties. Summary and conclusions 261 Cobalt loaded zirconium porous clay heterostructures were found to be promising catalyst for the tertiary butylation of phenol due to higher surface area and acidic properties. Copper loaded pillared clays were found to be good catalyst for the direct hydroxylation of benzene to phenol. Vanadium loaded PCHs catalysts were found to be efficient catalysts for oxidation of benzyl alcohol. DTP was firmly fixed on the mesoporous channels of PCHs by Direct method and functionalization method. DTP supported PCHs catalyst were found to be good catalyst for acetalization of cyclohexanone with more than 90% conversion.
Resumo:
Path planning and control strategies applied to autonomous mobile robots should fulfil safety rules as well as achieve final goals. Trajectory planning applications should be fast and flexible to allow real time implementations as well as environment interactions. The methodology presented uses the on robot information as the meaningful data necessary to plan a narrow passage by using a corridor based on attraction potential fields that approaches the mobile robot to the final desired configuration. It employs local and dense occupancy grid perception to avoid collisions. The key goals of this research project are computational simplicity as well as the possibility of integrating this method with other methods reported by the research community. Another important aspect of this work consist in testing the proposed method by using a mobile robot with a perception system composed of a monocular camera and odometers placed on the two wheels of the differential driven motion system. Hence, visual data are used as a local horizon of perception in which trajectories without collisions are computed by satisfying final goal approaches and safety criteria