938 resultados para Critical current degradation
Resumo:
This thesis is devoted to the development, synthesis, properties, and applications of nano materials for critical technologies, including three areas: (1) Microbial contamination of drinking water is a serious problem of global significance. About 51% of the waterborne disease outbreaks in the United States can be attributed to contaminated ground water. Development of metal oxide nanoparticles, as viricidal materials is of technological and fundamental scientific importance. Nanoparticles with high surface areas and ultra small particle sizes have dramatically enhanced efficiency and capacity of virus inactivation, which cannot be achieved by their bulk counterparts. A series of metal oxide nanoparticles, such as iron oxide nanoparticles, zinc oxide nanoparticles and iron oxide-silver nanoparticles, coated on fiber substrates was developed in this research for evaluation of their viricidal activity. We also carried out XRD, TEM, SEM, XPS, surface area measurements, and zeta potential of these nanoparticles. MS2 virus inactivation experiments showed that these metal oxide nanoparticle coated fibers were extremely powerful viricidal materials. Results from this research suggest that zinc oxide nanoparticles with diameter of 3.5 nm, showing an isoelectric point (IEP) at 9.0, were well dispersed on fiberglass. These fibers offer an increase in capacity by orders of magnitude over all other materials. Compared to iron oxide nanoparticles, zinc oxide nanoparticles didn’t show an improvement in inactivation kinetics but inactivation capacities did increase by two orders of magnitude to 99.99%. Furthermore, zinc oxide nanoparticles have higher affinity to viruses than the iron oxide nanoparticles in presence of competing ions. The advantages of zinc oxide depend on high surface charge density, small nanoparticle sizes and capabilities of generating reactive oxygen species. The research at its present stage of development appears to offer the best avenue to remove viruses from water. Without additional chemicals and energy input, this system can be implemented by both points of use (POU) and large-scale use water treatment technology, which will have a significant impact on the water purification industry. (2) A new family of aliphatic polyester lubricants has been developed for use in micro-electromechanical systems (MEMS), specifically for hard disk drives that operate at high spindle speeds (>15000rpm). Our program was initiated to address current problems with spin-off of the perfluoroether (PFPE) lubricants. The new polyester lubricant appears to alleviate spin-off problems and at the same time improves the chemical and thermal stability. This new system provides a low cost alternative to PFPE along with improved adhesion to the substrates. In addition, it displays a much lower viscosity, which may be of importance to stiction related problems. The synthetic route is readily scalable in case additional interest emerges in other areas including small motors. (3) The demand for increased signal transmission speed and device density for the next generation of multilevel integrated circuits has placed stringent demands on materials performance. Currently, integration of the ultra low-k materials in dual Damascene processing requires chemical mechanical polishing (CMP) to planarize the copper. Unfortunately, none of the commercially proposed dielectric candidates display the desired mechanical and thermal properties for successful CMP. A new polydiacetylene thermosetting polymer (DEB-TEB), which displays a low dielectric constant (low-k) of 2.7, was recently developed. This novel material appears to offer the only avenue for designing an ultra low k dielectric (1.85k), which can still display the desired modulus (7.7Gpa) and hardness (2.0Gpa) sufficient to withstand the process of CMP. We focused on further characterization of the thermal properties of spin-on poly (DEB-TEB) ultra-thin film. These include the coefficient of thermal expansion (CTE), biaxial thermal stress, and thermal conductivity. Thus the CTE is 2.0*10-5K-1 in the perpendicular direction and 8.0*10-6 K-1 in the planar direction. The low CTE provides a better match to the Si substrate which minimizes interfacial stress and greatly enhances the reliability of the microprocessors. Initial experiments with oxygen plasma etching suggest a high probability of success for achieving vertical profiles.
Resumo:
Lantana camara L. is a significant weed of which there are some 650 varieties in over 60 countries or island groups. It has been the focus of biological control attempts for a century, yet still poses major problems in many regions. Lantana has a significant impact on economic and environmental areas and is difficult to control. The key to good management of lantana is constant vigilance. Repeated control of new regrowth is critical to success. Control of new infestations should be a priority because the species is able to expand its range during good seasons, but does not die out during poor conditions. This book is a resource for land managers and researchers on methods of lantana control, particularly biocontrol.
Resumo:
Purpose of review: Health-related quality of life (HRQoL) is an important patient-reported outcome measure following critical illness. ‘Validated’ and professionally endorsed generic measures are widely used to evaluate critical care intervention and guide practice, policy and research. Although recognizing that they are ‘here to stay’, leading QoL researchers are beginning to question their ‘fitness for purpose’. It is therefore timely to review critiques of their limitations in the wider healthcare and social science literatures and to examine the implications for critical care research including, in particular, emerging interventional studies in which HRQoL is the primary outcome of interest. Recent findings: Generic HRQoL measures have provided important yet limited insights into HRQoL among survivors of critical illness. They are rarely developed or validated in collaboration with patients and cannot therefore be assumed to reflect their experiences and perspectives. Summary: Collaboration with patients is advocated in order to improve the interpretation and utility of such data. Failure to do so may result in important study effects being overlooked and the dismissal of potentially useful interventions.
Resumo:
This thesis is an examination of the ASEAN’s prospects in establishing regional competition policy in the Southeast Asia region, a topic of contemporary relevance in light of the ASEAN’s recent foray into the economic integration field on 31 December 2015. It questions whether the current approach undertaken by the ASEAN could contribute to an effective regional competition policy under the regional market integration. In answering this question, the thesis first critically surveys the current terrain of regional competition laws and policies in order to determine the possible existence of an optimal template. It argues that although the EU model is oft used as a source of inspiration, each regional organisation conceives different configurations of the model in order to best adjust to the local regional contexts. The thesis makes an inquiry into the narratives of the ASEAN’s competition policy, as well as the ASEAN’s specific considerations in the development of competition policy, before comparing the findings to the actual approaches taken by the ASEAN in its pursuit of regional competition policy. This thesis reveals that the actual approach taken by the ASEAN demonstrates an important discrepancy from the economic integration goal. The ASEAN applies a soft harmonisation approach regarding substantive competition law while refraining from establishing a centralised institution or a representative institution. The sole organ with regards to competition policy at the regional level is an expert organ. The thesis also conducts an investigation into the reception of the ASEAN’s regional policy by the member states in order to ascertain the possibility of the achievement of the ASEAN’s aspiration of regional competition policy. The study reveals that despite some shared similarities in the broad principles of competition law amongst the member states, the various competition law regimes are not harmonised thus creating challenging obstacle to the ASEAN’s ambition. The thesis then concludes that the ASEAN’s approach to regional competition law is unlikely to be effective.
Resumo:
Polymer aluminum electrolytic capacitors were introduced to provide an alternative to liquid electrolytic capacitors. Polymer electrolytic capacitor electric parameters of capacitance and ESR are less temperature dependent than those of liquid aluminum electrolytic capacitors. Furthermore, the electrical conductivity of the polymer used in these capacitors (poly-3,4ethylenedioxithiophene) is orders of magnitude higher than the electrolytes used in liquid aluminum electrolytic capacitors, resulting in capacitors with much lower equivalent series resistance which are suitable for use in high ripple-current applications. The presence of the moisture-sensitive polymer PEDOT introduces concerns on the reliability of polymer aluminum capacitors in high humidity conditions. Highly accelerated stress testing (or HAST) (110ºC, 85% relative humidity) of polymer aluminum capacitors in which the parts were subjected to unbiased HAST conditions for 700 hours was done to understand the design factors that contribute to the susceptibility to degradation of a polymer aluminum electrolytic capacitor exposed to HAST conditions. A large scale study involving capacitors of different electrical ratings (2.5V – 16V, 100µF – 470 µF), mounting types (surface-mount and through-hole) and manufacturers (6 different manufacturers) was done to determine a relationship between package geometry and reliability in high temperature-humidity conditions. A Geometry-Based HAST test in which the part selection limited variations between capacitor samples to geometric differences only was done to analyze the effect of package geometry on humidity-driven degradation more closely. Raman spectroscopy, x-ray imaging, environmental scanning electron microscopy, and destructive analysis of the capacitors after HAST exposure was done to determine the failure mechanisms of polymer aluminum capacitors under high temperature-humidity conditions.
Resumo:
In this thesis, we present a quantitative approach using probabilistic verification techniques for the analysis of reliability, availability, maintainability, and safety (RAMS) properties of satellite systems. The subject of our research is satellites used in mission critical industrial applications. A strong case for using probabilistic model checking to support RAMS analysis of satellite systems is made by our verification results. This study is intended to build a foundation to help reliability engineers with a basic background in model checking to apply probabilistic model checking to small satellite systems. We make two major contributions. One of these is the approach of RAMS analysis to satellite systems. In the past, RAMS analysis has been extensively applied to the field of electrical and electronics engineering. It allows system designers and reliability engineers to predict the likelihood of failures from the indication of historical or current operational data. There is a high potential for the application of RAMS analysis in the field of space science and engineering. However, there is a lack of standardisation and suitable procedures for the correct study of RAMS characteristics for satellite systems. This thesis considers the promising application of RAMS analysis to the case of satellite design, use, and maintenance, focusing on its system segments. Data collection and verification procedures are discussed, and a number of considerations are also presented on how to predict the probability of failure. Our second contribution is leveraging the power of probabilistic model checking to analyse satellite systems. We present techniques for analysing satellite systems that differ from the more common quantitative approaches based on traditional simulation and testing. These techniques have not been applied in this context before. We present the use of probabilistic techniques via a suite of detailed examples, together with their analysis. Our presentation is done in an incremental manner: in terms of complexity of application domains and system models, and a detailed PRISM model of each scenario. We also provide results from practical work together with a discussion about future improvements.
Resumo:
The discussions about social justice date from ancient times, but despite the enduring interest in the topic and the progress made, we are still witnessing injustices throughout the world. Thus, the search for social justice, under some form, is an inseparable part of our lives. In general, social justice may be considered as a critical idea that challenges us to reform our institutions and practices in the name of greater fairness (Miller 1999, p. x). In political and policy debates, social justice is often related to fair access (Brown, 2013) but at the same time its meanings seem to vary when we consider different definitions, perspectives and social theories (Zajda, Majhanovich, & Rust, 2006). When seen in the context of higher education, social justice appears in relevant literature as a buzzword (Patton, Shahjahan, Riyad, & Osei-Kofi, 2010). Within the recent studies of higher education and public debates related to the development of higher education, more emphasis is placed on the link between higher education and the economic growth and how higher education could be more responsive to the labour market demands, and little emphasis has been put on social justice. Given this, the present study attempts to at least partially fill the gap with regard to this apparently very topical issue, especially in the context of the unprecedented worldwide expansion of higher education in the last century (Schofer & Meyer, 2005), an expansion that is expected to continue in the next decades. More specifically, the expansion of higher education intensified in the second part of the 20th century, especially after World War II. It was seen as a result of the intertwined dynamics related to demographic, economic and political pressures (Goastellec, 2008a). This trend undoubtedly contributed to the increase of the size of the student body. To illustrate this trend, we may point out that in the period between 2000 and 2007, the number of tertiary students in the world increased from 98,303,539 to 150,656,459 (UNESCO, 2009, p. 205). This growth occurred in all regions of the world, including Central and Eastern Europe, North America and Western Europe, and contributed to raising the number of tertiary graduates. Thus, in the period between 2000 and 2008, the total number of tertiary graduates in the European Union (EU) 27 increased by a total of 35 percent (or 4.5 percent per year). However, this growth was very uneven, ranging from 21.1 percent in Romania to 0.7 percent in Hungary (European Commission working staff document, 2011). The increase of the number of students and graduates was seen as enhancing the social justice in higher education, since it is assumed that expansion “extends a valued good to a broader spectrum of the population” (Arum, Gamoran, & Shavit, 2007, p. 29). However, concerns for a deep contradiction for 21st-century higher education also emerged with regard to its expansion.
Resumo:
The service of a critical infrastructure, such as a municipal wastewater treatment plant (MWWTP), is taken for granted until a flood or another low frequency, high consequence crisis brings its fragility to attention. The unique aspects of the MWWTP call for a method to quantify the flood stage-duration-frequency relationship. By developing a bivariate joint distribution model of flood stage and duration, this study adds a second dimension, time, into flood risk studies. A new parameter, inter-event time, is developed to further illustrate the effect of event separation on the frequency assessment. The method is tested on riverine, estuary and tidal sites in the Mid-Atlantic region. Equipment damage functions are characterized by linear and step damage models. The Expected Annual Damage (EAD) of the underground equipment is further estimated by the parametric joint distribution model, which is a function of both flood stage and duration, demonstrating the application of the bivariate model in risk assessment. Flood likelihood may alter due to climate change. A sensitivity analysis method is developed to assess future flood risk by estimating flood frequency under conditions of higher sea level and stream flow response to increased precipitation intensity. Scenarios based on steady and unsteady flow analysis are generated for current climate, future climate within this century, and future climate beyond this century, consistent with the WWTP planning horizons. The spatial extent of flood risk is visualized by inundation mapping and GIS-Assisted Risk Register (GARR). This research will help the stakeholders of the critical infrastructure be aware of the flood risk, vulnerability, and the inherent uncertainty.
Resumo:
The topic of the thesis is media discourse about current state if income inequality in the US, and political ideologies as influences behind the discourse. The data consists of four opinion articles, two from CNN and two from Fox News. The purpose of the study was to examine how media represents income inequality as an issue, and if the attitudes conveyed are concerned or indifferent. Previous studies have indicated that the level of income is often seen as a personal responsibility, and such perspective can be linked with Republican ideology. In contrast, the Democrats typically express more concern about the consequences of inequality. CNN has been previously considered to have a Democratic bias, and Fox News has been considered to have Republican bias, which is one reason why these two news channels were chosen as the sources of the data. The study is a critical discourse analysis, and the methods applied were sociocognitive approach, which analyzes the social and cognitive factors affecting the discourse, and appraisal framework, which was applied to scrutinize the expressed attitudes more closely by identifyind specific linguistic features. The appraisal framework includes studying such features as affect, judgment and appreciation, which offer a more detailed analysis on the attitudes present in the articles. The sociocognitive approach, additionally, offers a way of analyzing a more broad context affecting the articles. The findings were then compared, to see if there are differences between the articles, or between the news sites with alleged bias. The findings showed that CNN, with alleged Democratic bias, had a more symphatetic attitude towards income inequality, whereas Fox News, with more Republican views, showed clearly less concern towards the issue. Moreover, the Fox News articles had such dubious claims that the underlying ideology behind the articles could be even supporting of income inequality, as it allows the rich to pursue all the wealth they can without having to give anything away. The results, thus, suggest that the political ideologies may a significant effect on media discourse, which, in turn, may have a significant effect on the attitudes of the public towards great issues that could require prompt measures.
Resumo:
Contaminants of emerging concern (CECs) are continuously being released into the environment mainly because of their incomplete removal in the sewage treatment plants (STPs). The CECs selected for the study include antibiotics (macrolides, sulfonamides and ciprofloxacin), sucralose (an artificial sweetener) and dioctyl sulfosuccinate (DOSS, chemical dispersant used in the Deepwater Horizon oil spill). After being discharged into waterways from STPs, photo degradation is a key factor in dictating the environmental fate of antibiotics and sucralose. Photodegradation efficiency depends on many factors such as pH of the matrix, matrix composition, light source and structure of the molecule. These factors exert either synergistic or antagonistic effects in the environment and thus experiments with isolated factors may not yield the same results as the natural environmental processes. Hence in the current study photodegradation of 13 CECs (antibiotics, sucralose and dicotyl sulfosuccinate) were evaluated using natural water matrices with varying composition (deionized water, fresh water and salt water) as well as radiation of different wavelengths (254 nm, 350 nm and simulated solar radiation) in order to mimic natural processes. As expected the contribution of each factor on the overall rate of photodegradation is contaminant specific, for example under similar conditions, the rate in natural waters compared to pure water was enhanced for antibiotics (2-11 fold), significantly reduced for sucralose (no degradation seen in natural waters) and similar in both media for DOSS. In general, it was observed that the studied compounds degraded faster at 254 nm, while when using a simulated sunlight radiation the rate of photolysis of DOSS increased and the rates for antibiotics decreased in comparison to the 350 nm radiation. The photo stability of the studied CECs followed the order sucralose > DOSS > macrolides > sulfonamides > ciprofloxacin and a positive relationship was observed between photo stability and their ubiquitous presence in natural aquatic matrices. An online LC-MS/MS method was developed and validated for sucralose and further applied to reclaimed waters (n =56) and drinking waters (n = 43) from South Florida. Sucralose was detected in reclaimed waters with concentrations reaching up to 18 µg/L. High frequency of detection (> 80%) in drinking waters indicate contamination of ground waters in South Florida by anthropogenic activity.
Resumo:
Contexto: La eficacia de los cannabinoides en el dolor neuropático es desconocida. El control del dolor es determinante en los pacientes ya que genera un impacto negativo en la calidad de vida de los pacientes. Objetivo: El presente trabajo pretende demostrar la evidencia sobre la eficacia de los medicamentos cannabinoides en el control del dolor neuropático oncológico, mediante la evaluación de la literatura disponible. Metodología: Se realizó una revisión sistemática de literatura incluyendo estudios experimentales, observacionales y revisiones sistemáticas en un periodo de 15 años. Se incluyeron todos los estudios desde el años 2000 con evidencia IB según la escala de evidencia de Oxford. Resultados: Cuatro estudios cumplieron criterios para su inclusión, sin embargo la evidencia es baja y no permite recomendar o descartar los cannabinoides como terapia coadyuvante en control del dolor neuropático oncológico. La combinación de THC/CDB (Sativex®) parece ser un medicamento seguro pues no se reportaron muertes asociadas a su uso, sin embargo la presentación de eventos adversos a nivel gastrointestinal y neurológico podría aumentar el riesgo de interacciones medicamentosas y tener un impacto negativo en la calidad de vida de los pacientes oncológicos. Conclusiones: No hay suficiente literatura y la evidencia no es suficiente para recomendar o descartar el uso de los cannabinoides en dolor neuropático oncológico. Futuros estudios deben realizarse para analizar el beneficio de estos medicamentos. Aunque ética y socialmente hay resistencia para el uso de los cannabinoides, actualmente hay una gran discusión política en el mundo y en Colombia para su aceptación como terapia en el control del dolor.
Resumo:
Critical swimming speed (Ucrit) of the potamodromous southern straight-mouth nase was assessed in a modified Blazka-type swim tunnel. Forty-one P. willkommii were tested and exhibited a mean± SD Ucrit of 0.54 ± 0.07 m/s. The sex of experimental fish had no effect on Ucrit but a significant positive relationship was found between swimming performance and the body condition of tested fish. Results from this study can be used to improve the current design of fish passes targeting this, or similar, potamodromous fish species.
Resumo:
Brazil typifies the land use changes happening in South America, where natural vegetation is continuously converted into agriculturally used lands, such as cattle pastures and croplands. Such changes in land use are always associated with changes in the soil nutrient cycles and result in altered greenhouse gas fluxes from the soil to the atmosphere. In this study, we analyzed literature values to extract patterns of direct nitrous oxide (N2O) emissions from soils of different ecosystems in Brazil. Fluxes from natural ecosystems exhibited a wide range: whereas median annual flux rates were highest in Amazonian and Atlantic rainforests (2.42 and 0.88 kg N ha-1), emissions from cerrado soils were close to zero. The decrease in emissions from pastures with increasing time after conversion was associated with pasture degradation. We found comparatively low N2O-N fluxes from croplands (-0.07 to 4.26 kg N ha-1 yr-1 , median 0.80 kg N ha-1 yr-1) and a low response to N fertilization. Contrary to the assumptions, soil parameters, such as pH, Corg, and clay content emerged as poor predictors for N2O fluxes. This could be a result of the formation of micro-aggregates, which strongly affect the hydraulic properties of the soil, and consequently define nitrification and denitrification potentials. Since data from croplands mainly derived from areas that had been under natural cerrado vegetation before, it could explain the low emissions under agriculture. Measurements must be more frequent and regionally spread in order to enable sound national estimates.
Resumo:
Prokaryotic organisms are one of the most successful forms of life, they are present in all known ecosystems. The deluge diversity of bacteria reflects their ability to colonise every environment. Also, human beings host trillions of microorganisms in their body districts, including skin, mucosae, and gut. This symbiosis is active for all other terrestrial and marine animals, as well as plants. With the term holobiont we refer, with a single word, to the systems including both the host and its symbiotic microbial species. The coevolution of bacteria within their ecological niches reflects the adaptation of both host and guest species, and it is shaped by complex interactions that are pivotal for determining the host state. Nowadays, thanks to the current sequencing technologies, Next Generation Sequencing, we have unprecedented tools for investigating the bacterial life by studying the prokaryotic genome sequences. NGS revolution has been sustained by the advancements in computational performance, in terms of speed, storage capacity, algorithm development and hardware costs decreasing following the Moore’s Law. Bioinformaticians and computational biologists design and implement ad hoc tools able to analyse high-throughput data and extract valuable biological information. Metagenomics requires the integration of life and computational sciences and it is uncovering the deluge diversity of the bacterial world. The present thesis work focuses mainly on the analysis of prokaryotic genomes under different aspects. Being supervised by two groups at the University of Bologna, the Biocomputing group and the group of Microbial Ecology of Health, I investigated three different topics: i) antimicrobial resistance, particularly with respect to missense point mutations involved in the resistant phenotype, ii) bacterial mechanisms involved in xenobiotic degradation via the computational analysis of metagenomic samples, and iii) the variation of the human gut microbiota through ageing, in elderly and longevous individuals.
Resumo:
In this thesis, a TCAD approach for the investigation of charge transport in amorphous silicon dioxide is presented for the first time. The proposed approach is used to investigate high-voltage silicon oxide thick TEOS capacitors embedded in the back-end inter-level dielectric layers for galvanic insulation applications. In the first part of this thesis, a detailed review of the main physical and chemical properties of silicon dioxide and the main physical models for the description of charge transport in insulators are presented. In the second part, the characterization of high-voltage MIM structures at different high-field stress conditions up to the breakdown is presented. The main physical mechanisms responsible of the observed results are then discussed in details. The third part is dedicated to the implementation of a TCAD approach capable of describing charge transport in silicon dioxide layers in order to gain insight into the microscopic physical mechanisms responsible of the leakage current in MIM structures. In particular, I investigated and modeled the role of charge injection at contacts and charge build-up due to trapping and de-trapping mechanisms in the oxide layer to the purpose of understanding its behavior under DC and AC stress conditions. In addition, oxide breakdown due to impact-ionization of carriers has been taken into account in order to have a complete representation of the oxide behavior at very high fields. Numerical simulations have been compared against experiments to quantitatively validate the proposed approach. In the last part of the thesis, the proposed approach has been applied to simulate the breakdown in realistic structures under different stress conditions. The TCAD tool has been used to carry out a detailed analysis of the most relevant physical quantities, in order to gain a detailed understanding on the main mechanisms responsible for breakdown and guide design optimization.