894 resultados para Crime scene searches
Resumo:
Software representations of scenes, i.e. the modelling of objects in space, are used in many application domains. Current modelling and scene description standards focus on visualisation dimensions, and are intrinsically limited by their dependence upon their semantic interpretation and contextual application by humans. In this paper we propose the need for an open, extensible and semantically rich modelling language, which facilitates a machine-readable semantic structure. We critically review existing standards and techniques, and highlight a need for a semantically focussed scene description language. Based on this defined need we propose a preliminary solution, based on hypergraph theory, and reflect on application domains.
Resumo:
Full-waveform laser scanning data acquired with a Riegl LMS-Q560 instrument were used to classify an orange orchard into orange trees, grass and ground using waveform parameters alone. Gaussian decomposition was performed on this data capture from the National Airborne Field Experiment in November 2006 using a custom peak-detection procedure and a trust-region-reflective algorithm for fitting Gauss functions. Calibration was carried out using waveforms returned from a road surface, and the backscattering coefficient c was derived for every waveform peak. The processed data were then analysed according to the number of returns detected within each waveform and classified into three classes based on pulse width and c. For single-peak waveforms the scatterplot of c versus pulse width was used to distinguish between ground, grass and orange trees. In the case of multiple returns, the relationship between first (or first plus middle) and last return c values was used to separate ground from other targets. Refinement of this classification, and further sub-classification into grass and orange trees was performed using the c versus pulse width scatterplots of last returns. In all cases the separation was carried out using a decision tree with empirical relationships between the waveform parameters. Ground points were successfully separated from orange tree points. The most difficult class to separate and verify was grass, but those points in general corresponded well with the grass areas identified in the aerial photography. The overall accuracy reached 91%, using photography and relative elevation as ground truth. The overall accuracy for two classes, orange tree and combined class of grass and ground, yielded 95%. Finally, the backscattering coefficient c of single-peak waveforms was also used to derive reflectance values of the three classes. The reflectance of the orange tree class (0.31) and ground class (0.60) are consistent with published values at the wavelength of the Riegl scanner (1550 nm). The grass class reflectance (0.46) falls in between the other two classes as might be expected, as this class has a mixture of the contributions of both vegetation and ground reflectance properties.
Resumo:
It is often assumed that humans generate a 3D reconstruction of the environment, either in egocentric or world-based coordinates, but the steps involved are unknown. Here, we propose two reconstruction-based models, evaluated using data from two tasks in immersive virtual reality. We model the observer’s prediction of landmark location based on standard photogrammetric methods and then combine location predictions to compute likelihood maps of navigation behaviour. In one model, each scene point is treated independently in the reconstruction; in the other, the pertinent variable is the spatial relationship between pairs of points. Participants viewed a simple environment from one location, were transported (virtually) to another part of the scene and were asked to navigate back. Error distributions varied substantially with changes in scene layout; we compared these directly with the likelihood maps to quantify the success of the models. We also measured error distributions when participants manipulated the location of a landmark to match the preceding interval, providing a direct test of the landmark-location stage of the navigation models. Models such as this, which start with scenes and end with a probabilistic prediction of behaviour, are likely to be increasingly useful for understanding 3D vision.
Resumo:
Scene classification based on latent Dirichlet allocation (LDA) is a more general modeling method known as a bag of visual words, in which the construction of a visual vocabulary is a crucial quantization process to ensure success of the classification. A framework is developed using the following new aspects: Gaussian mixture clustering for the quantization process, the use of an integrated visual vocabulary (IVV), which is built as the union of all centroids obtained from the separate quantization process of each class, and the usage of some features, including edge orientation histogram, CIELab color moments, and gray-level co-occurrence matrix (GLCM). The experiments are conducted on IKONOS images with six semantic classes (tree, grassland, residential, commercial/industrial, road, and water). The results show that the use of an IVV increases the overall accuracy (OA) by 11 to 12% and 6% when it is implemented on the selected and all features, respectively. The selected features of CIELab color moments and GLCM provide a better OA than the implementation over CIELab color moment or GLCM as individuals. The latter increases the OA by only ∼2 to 3%. Moreover, the results show that the OA of LDA outperforms the OA of C4.5 and naive Bayes tree by ∼20%. © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.8.083690]
Resumo:
This case study from North Spain, highlights the importance of the collection of mites in addition to insects, from crime scenes or corpses subjected to environmental constraints that reduce or minimise insect activity, such as hanged corpses. In addition, this analysis highlights the relevance of arthropods’ collection in the field, even after the corpse has been moved away for autopsy. Four species of mites, phoretic on carrion (Silphidae) and rove (Staphylinidae) beetles, complemented and reinforced the autopsy analysis as well as the scarce information provided by insect activity. Poecilochirus carabi Canestrini & Canestrini, 1882 and Poecilochirus (Physoparasitus) davydovae Hyatt, 1980 (Mesostigmata: Parasitidae) were found in association with two Silphidae, Nicrophorus Fabricius, 1775 and Necrodes Leach, 1815, only when sampled in the autopsy room; this is suggestive of host-switching of mites and was likely due to the lack of availability of specific carriers in the field. The interpretation of the activity of Parasitidae mites both in the field and the autopsy room allows a better understanding of the timing and circumstances of decomposition. Phoretic deutonymphs of Pelzneria Scheucher 1957 (Astigmata: Histiostomatidae) were highly abundant, mostly P. crenulata Oudemans, 1909 and are reported for the first time on a Staphylinidae rove beetle, Creophilus maxillosus (L., 1758). Surprisingly, in this case study no Pelzneria were associated with the Silphidae found, which are their most common hosts, such as Necrodes littoralis (L., 1758) and Nicrophorus interruptus (Stephens, 1830). All histiostomatids were removed from the staphylinid (rove beetle) collected from the soil, at the scene of death, suggesting a recent arrival of the beetle. The occurrence of Staphylinidae beetles and their associated mites, such as Parasitidae and Pelzneria, and the information they provided would have been easily overlooked or lost if only the autopsy sampling would have been considered in the analysis of the case. The four mite species are reported for the first time for the Iberian Peninsula.
Resumo:
Objective The relationship between sex/gender differences and autism has attracted a variety of research ranging from clinical, neurobiological to etiological, stimulated by the male bias in autism prevalence. Findings are complex and do not always relate to each other in a straightforward manner. Distinct but interlinked questions on the relationship between sex/gender differences and autism remain under addressed. To better understand the implications from existing research and to help design future studies, we propose a four-level conceptual framework to clarify the embedded themes. Method We searched PubMed for publications before September 2014 using search terms “‘sex OR gender OR females’ AND autism.” 1,906 citations were screened for relevance, along with publications identified via additional literature reviews, resulting in 329 reports that were reviewed. Results Level 1 “Nosological and diagnostic challenges” concerns the question “How should autism be defined and diagnosed in males and females?” Level 2 “Sex/gender-independent and sex/gender-dependent characteristics” addresses the question “What are the similarities and differences between males and females with autism?” Level 3 “General models of etiology: liability and threshold” asks the question “How is the liability for developing autism linked to sex/gender?” Level 4 “Specific etiological-developmental mechanisms” focuses on the question “What etiological-developmental mechanisms of autism are implicated by sex/gender and/or sexual/gender differentiation?” Conclusions Using this conceptual framework, findings can be more clearly summarized, and the implications of the links between findings from different levels can become clearer. Based on this four-level framework, we suggest future research directions, methodology, and specific topics in sex/gender differences and autism.