348 resultados para Coryphaenoides-(nematonurus)-armatus
Resumo:
Six sites (759-764) were drilled on the Exmouth Plateau during Ocean Drilling Program Leg 122. Nannofossilrich Cenozoic sediments were recovered at all six sites, reflecting the open-ocean conditions that prevailed over the Exmouth Plateau during the Cenozoic. Calcareous nannofossils are abundant, diverse (250 different species identified), and generally well preserved throughout the composite lower Paleocene to Quaternary section. The diversity and preservation of nannofossils permits a high degree of stratigraphic resolution at each site. Site 762 on the central part of the Exmouth Plateau contains an almost unbroken Cenozoic record (only Miocene Zones NN3, NN8, and NN10 are missing). This site may prove to be a useful Cenozoic biostratigraphic and biomagnetochronologic reference section for the eastern Indian Ocean.
Resumo:
Ocean Drilling Program Leg 135 drilled at two sites on the Tonga Ridge. Calcareous nannofossils recovered at Site 840 on the Tonga Ridge date the sedimentary sequence as late Pleistocene or Holocene (CN15) through late Miocene (CN9) in age. A hiatus occurs in the mid Pliocene. Site 841 in the Tonga Trench yielded a sedimentary sequence with nannofossils from middle Pleistocene Subzone CN14b through the middle or late Eocene Subzones CP14a-CP15b overlying a rhyolitic volcanic basement. Part of the Eocene interval contains the shallow-water nannofossil taxa Braarudosphaera, Micrantholithus, and Pemma. A major unconformity separates lower Oligocene Zone CP 16 from lower middle Miocene Zone CN4 strata.
Resumo:
The chronostratigraphy, the calcareous nannofossil biochronology, and the biostratigraphy of the Miocene and Pliocene sediments retrieved during Leg 115 in the equatorial western Indian Ocean are presented and discussed. Most of the zonal boundaries of the standard 1971 zonation of Martini and the 1973 zonation of Bukry are easily recognized in these low-latitude sediments. We also comment on the secondary events that are proposed in the literature to improve the biostratigraphic resolution provided by the standard zonations. The study of calcareous nannofossil biostratigraphy and taphonomy of sequences from the Northern Mascarene Plateau area, which was drilled to investigate the Neogene history of carbonate flux and dissolution, indicate that the accumulation of carbonates in this area results from a complex interplay among carbonate bioproductivity, carbonate removal by chemical dissolution and mechanical erosion, and carbonate addition by mass and current transport. In spite of these drawbacks, major changes and trends in carbonate accumulation can be recognized, most of which, if not all, correlate with major steps in the evolution of the Neogene climatic system.
Resumo:
Abundance and species composition of copepods were studied during the expedition ANT XXI/1 on a latitudinal transect in the eastern Atlantic from 34°49.5' N to 27°28.1' S between 2-20 November 2002. Stratified zooplankton tows were carried out at 19 stations with a multiple opening-closing net between 300 m water depth and the surface. Cyclopoid and calanoid copepods showed similar patterns of distribution and abundance. Oithona was the most abundant cyclopoid genus, followed by Oncaea. A total of 149 calanoid copepod species were identified. Clausocalanus was by far the most abundant genus, comprising on average about 45% of all calanoids, followed by Calocalanus (13%), Delibus (9%), Paracalanus (6%), and Pleuromamma (5%). All other genera comprised on average less than 5% each, with 40 genera less than 1%. The calanoid copepod communities were distinguished broadly in accordance with sea surface temperature, separating the subtropical from the tropical stations, and were largely determined by variation in species composition and species abundance. Nine Clausocalanus species were identified. The most numerous Clausocalanus species was C. furcatus, which on average comprised half of all adult of this genus. C. pergens, C. paululus, and C. jobei, contributed an average of 19%, 9%, and 9%, respectively. The Clausocalanus species differed markedly in their horizontal and vertical distributions: C. furcatus, C. jobei, and C. mastigophorus had widespread distributions and inhabited the upper water layers. Major differences between the species were found in abundance. C. paululus and C. arcuicornis were biantitropical and were absent or occurred in very low numbers in the equatorial zone. C. parapergens was found at all stations and showed a bimodal distribution pattern with maxima in the subtropics. C. pergens occurred in higher numbers only at the southern stations, where it replaced C. furcatus in dominance. In contrast to the widespread species, the bulk of the C. paululus, C. arcuicornis, C. parapergens, and C. pergens populations was concentrated in the colder, deeper water layers below the thermocline, thereby avoiding the warm surface waters. C. lividus was found only at the most northern and C. ingens only at the most southern stations. Both species were found almost exclusively in the upper 50 m. The distinct differences in abundance and horizontal and vertical distribution suggest a strong ecological differentiation among the Clausocalanus species.