969 resultados para Corner Reflector


Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: The purpose of this study was to evaluate the clinical and subjective outcomes after arthroscopic-assisted double-bundle posterior cruciate ligament (PCL) reconstruction. METHODS: A series of 15 patients with grade III isolated chronic PCL tears underwent double-bundle PCL reconstruction. Of these patients, 8 (53%) had simultaneous fractures. The mean time from accident to surgery was 10.8 months (range, 8 to 15 months). The mean age at the time of surgery was 28.2 years (range, 17 to 43 years). All of the patients reported knee insecurity during activities of daily living or light sporting activities, with associated anterior knee pain in 5 patients. Preoperatively, posterolateral or posteromedial corner injuries were ruled out through accurate clinical examination. The knees were assessed before surgery and at a mean follow-up of 3.2 years (range, 2 to 5 years) with a physical examination, 4 different rating scales, and stress radiographs obtained with a Telos device (Telos, Marburg, Germany). RESULTS: Postoperative physical examination revealed a reduction of the posterior drawer and tibial step-off in all cases, although the posterior laxity was not completely normalized. Nevertheless, the patients were subjectively better after surgery. The subjective International Knee Documentation Committee score was significantly ameliorated. With regard to the objective International Knee Documentation Committee score, 6 knees (40%) were graded as abnormal because of posterior displacement of 6 mm or greater on follow-up stress radiographs with the Telos device. On the Lysholm knee scoring scale, the score was excellent in 13% of patients and good in 87%. The mean score on the Hospital for Special Surgery knee ligament rating scale was 85.8. The Tegner activity score showed an amelioration after surgery, but no patient resumed his or her preinjury level of activities. The postoperative stress radiographs revealed an improvement in posterior instability of 50% or more in all but 3 knees (20%). CONCLUSIONS: Our technique of double-bundle PCL reconstruction produced a significant reduction in knee symptoms and allowed the patients to return to moderate or strenuous activity, although the posterior tibial translation was not completely normalized and our results appear to be no better than the results of single-bundle PCL reconstruction. LEVEL OF EVIDENCE: Level IV, therapeutic case series.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four-lane undivided roadways in urban areas can experience a degradation of service and/or safety as traffic volumes increase. In fact, the existence of turning vehicles on this type of roadway has a dramatic effect on both of these factors. The solution identified for these problems is typically the addition of a raised median or two-way left-turn lane (TWLTL). The mobility and safety benefits of these actions have been proven and are discussed in the “Past Research” chapter of this report along with some general cross section selection guidelines. The cost and right-of-way impacts of these actions are widely accepted. These guidelines focus on the evaluation and analysis of an alternative to the typical four-lane undivided cross section improvement approach described above. It has been found that the conversion of a four-lane undivided cross section to three lanes (i.e., one lane in each direction and a TWLTL) can improve safety and maintain an acceptable level of service. These guidelines summarize the results of past research in this area (which is almost nonexistent) and qualitative/quantitative before-and-after safety and operational impacts of case study conversions located throughout the United States and Iowa. Past research confirms that this type of conversion is acceptable or feasible in some situations but for the most part fails to specifically identify those situations. In general, the reviewed case study conversions resulted in a reduction of average or 85th percentile speeds (typically less than five miles per hour) and a relatively dramatic reduction in excessive speeding (a 60 to 70 percent reduction in the number of vehicles traveling five miles per hour faster than the posted speed limit was measured in two cases) and total crashes (reductions between 17 to 62 percent were measured). The 13 roadway conversions considered had average daily traffic volumes of 8,400 to 14,000 vehicles per day (vpd) in Iowa and 9,200 to 24,000 vehicles per day elsewhere. In addition to past research and case study results, a simulation sensitivity analysis was completed to investigate and/or confirm the operational impacts of a four-lane undivided to three-lane conversion. First, the advantages and disadvantages of different corridor simulation packages were identified for this type of analysis. Then, the CORridor SIMulation (CORSIM) software was used x to investigate and evaluate several characteristics related to the operational feasibility of a four-lane undivided to three-lane conversion. Simulated speed and level of service results for both cross sections were documented for different total peak-hour traffic, access densities, and access-point left-turn volumes (for a case study corridor defined by the researchers). These analyses assisted with the identification of the considerations for the operational feasibility determination of a four -lane to three-lane conversion. The results of the simulation analyses primarily confirmed the case study impacts. The CORSIM results indicated only a slight decrease in average arterial speed for through vehicles can be expected for a large range of peak-hour volumes, access densities, and access-point left-turn volumes (given the assumptions and design of the corridor case study evaluated). Typically, the reduction in the simulated average arterial speed (which includes both segment and signal delay) was between zero and four miles per hour when a roadway was converted from a four-lane undivided to a three-lane cross section. The simulated arterial level of service for a converted roadway, however, showed a decrease when the bi-directional peak-hour volume was about 1,750 vehicles per hour (or 17,500 vehicles per day if 10 percent of the daily volume is assumed to occur in the peak hour). Past research by others, however, indicates that 12,000 vehicles per day may be the operational capacity (i.e., level of service E) of a three-lane roadway due to vehicle platooning. The simulation results, along with past research and case study results, appear to support following volume-related feasibility suggestions for four-lane undivided to three-lane cross section conversions. It is recommended that a four-lane undivided to three-lane conversion be considered as a feasible (with respect to volume only) option when bi-directional peak-hour volumes are less than 1,500 vehicles per hour, but that some caution begin to be exercised when the roadway has a bi-directional peak-hour volume between 1,500 and 1,750 vehicles per hour. At and above 1,750 vehicles per hour, the simulation indicated a reduction in arterial level of service. Therefore, at least in Iowa, the feasibility of a four-lane undivided to three-lane conversion should be questioned and/or considered much more closely when a roadway has (or is expected to have) a peak-hour volume of more than 1,750 vehicles. Assuming that 10 percent of the daily traffic occurs during the peak-hour, these volume recommendations would correspond to 15,000 and 17,500 vehicles per day, respectively. These suggestions, however, are based on the results from one idealized case xi study corridor analysis. Individual operational analysis and/or simulations should be completed in detail once a four-lane undivided to three-lane cross section conversion is considered feasible (based on the general suggestions above) for a particular corridor. All of the simulations completed as part of this project also incorporated the optimization of signal timing to minimize vehicle delay along the corridor. A number of determination feasibility factors were identified from a review of the past research, before-and-after case study results, and the simulation sensitivity analysis. The existing and expected (i.e., design period) statuses of these factors are described and should be considered. The characteristics of these factors should be compared to each other, the impacts of other potentially feasible cross section improvements, and the goals/objectives of the community. The factors discussed in these guidelines include • roadway function and environment • overall traffic volume and level of service • turning volumes and patterns • frequent-stop and slow-moving vehicles • weaving, speed, and queues • crash type and patterns • pedestrian and bike activity • right-of-way availability, cost, and acquisition impacts • general characteristics, including - parallel roadways - offset minor street intersections - parallel parking - corner radii - at-grade railroad crossings xii The characteristics of these factors are documented in these guidelines, and their relationship to four-lane undivided to three-lane cross section conversion feasibility identified. This information is summarized along with some evaluative questions in this executive summary and Appendix C. In summary, the results of past research, numerous case studies, and the simulation analyses done as part of this project support the conclusion that in certain circumstances a four-lane undivided to three-lane conversion can be a feasible alternative for the mitigation of operational and/or safety concerns. This feasibility, however, must be determined by an evaluation of the factors identified in these guidelines (along with any others that may be relevant for a individual corridor). The expected benefits, costs, and overall impacts of a four-lane undivided to three-lane conversion should then be compared to the impacts of other feasible alternatives (e.g., adding a raised median) at a particular location.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé Les glissements de terrain représentent un des principaux risques naturels dans les régions montagneuses. En Suisse, chaque année les glissements de terrains causent des dégâts qui affectent les infrastructures et ont des coûts financiers importants. Une bonne compréhension des mécanismes des glissements peut permettre d'atténuer leur impact. Celle-ci passe notamment par la connaissance de la structure interne du glissement, la détermination de son volume et de son ou ses plans de glissement. Dans un glissement de terrain, la désorganisation et la présence de fractures dans le matériel déplacé engendre un changement des paramètres physiques et en particulier une diminution des vitesses de propagation des ondes sismiques ainsi que de la densité du matériel. Les méthodes sismiques sont de ce fait bien adaptées à l'étude des glissements de terrain. Parmi les méthodes sismiques, l'analyse de la dispersion des ondes de surface est une méthode simple à mettre en oeuvre. Elle présente l'avantage d'estimer les variations des vitesses de cisaillement avec la profondeur sans avoir spécifiquement recours à l'utilisation d'une source d'onde S et de géophones horizontaux. Sa mise en oeuvre en trois étapes implique la mesure de la dispersion des ondes de surface sur des réseaux étendus, la détermination des courbes de dispersion pour finir par l'inversion de ces courbes. Les modèles de vitesse obtenus à partir de cette procédure ne sont valides que lorsque les milieux explorés ne présentent pas de variations latérales. En pratique cette hypothèse est rarement vérifiée, notamment pour un glissement de terrain dans lequel les couches remaniées sont susceptibles de présenter de fortes hétérogénéités latérales. Pour évaluer la possibilité de déterminer des courbes de dispersion à partir de réseaux de faible extension des mesures testes ont été effectuées sur un site (Arnex, VD) équipé d'un forage. Un profil sismique de 190 m de long a été implanté dans une vallée creusée dans du calcaire et remplie par des dépôts glacio-lacustres d'une trentaine de mètres d'épaisseur. Les données acquises le long de ce profil ont confirmé que la présence de variations latérales sous le réseau de géophones affecte l'allure des courbes de dispersion jusqu'à parfois empêcher leur détermination. Pour utiliser l'analyse de la dispersion des ondes de surface sur des sites présentant des variations latérales, notre approche consiste à déterminer les courbes de dispersions pour une série de réseaux de faible extension, à inverser chacune des courbes et à interpoler les différents modèles de vitesse obtenus. Le choix de la position ainsi que de l'extension des différents réseaux de géophones est important. Il tient compte de la localisation des hétérogénéités détectées à partir de l'analyse de sismique réfraction, mais également d'anomalies d'amplitudes observées sur des cartes qui représentent dans le domaine position de tir - position du récepteur, l'amplitude mesurée pour différentes fréquences. La procédure proposée par Lin et Lin (2007) s'est avérée être une méthode efficace permettant de déterminer des courbes de dispersion à partir de réseaux de faible extension. Elle consiste à construire à partir d'un réseau de géophones et de plusieurs positions de tir un enregistrement temps-déports qui tient compte d'une large gamme de distances source-récepteur. Au moment d'assembler les différentes données une correction de phase est appliquée pour tenir compte des hétérogénéités situées entre les différents points de tir. Pour évaluer cette correction nous suggérons de calculer pour deux tir successif la densité spectrale croisée des traces de même offset: Sur le site d'Arnex, 22 courbes de dispersions ont été déterminées pour de réseaux de géophones de 10 m d'extension. Nous avons également profité du forage pour acquérir un profil de sismique verticale en ondes S. Le modèle de vitesse S déduit de l'interprétation du profil de sismique verticale est utilisé comme information à priori lors l'inversion des différentes courbes de dispersion. Finalement, le modèle en deux dimension qui a été établi grâce à l'analyse de la dispersion des ondes de surface met en évidence une structure tabulaire à trois couches dont les limites coïncident bien avec les limites lithologiques observées dans le forage. Dans celui-ci des argiles limoneuses associées à une vitesse de propagation des ondes S de l'ordre de 175 m/s surmontent vers 9 m de profondeur des dépôts de moraine argilo-sableuse caractérisés par des vitesses de propagation des ondes S de l'ordre de 300 m/s jusqu'à 14 m de profondeur et supérieur ou égal à 400 m/s entre 14 et 20 m de profondeur. Le glissement de la Grande Combe (Ballaigues, VD) se produit à l'intérieur du remplissage quaternaire d'une combe creusée dans des calcaires Portlandien. Comme dans le cas du site d'Arnex les dépôts quaternaires correspondent à des dépôts glacio-lacustres. Dans la partie supérieure la surface de glissement a été localisée à une vingtaine de mètres de profondeur au niveau de l'interface qui sépare des dépôts de moraine jurassienne et des dépôts glacio-lacustres. Au pied du glissement 14 courbes de dispersions ont été déterminées sur des réseaux de 10 m d'extension le long d'un profil de 144 m. Les courbes obtenues sont discontinues et définies pour un domaine de fréquence de 7 à 35 Hz. Grâce à l'utilisation de distances source-récepteur entre 8 et 72 m, 2 à 4 modes de propagation ont été identifiés pour chacune des courbes. Lors de l'inversion des courbes de dispersion la prise en compte des différents modes de propagation a permis d'étendre la profondeur d'investigation jusqu'à une vingtaine de mètres de profondeur. Le modèle en deux dimensions permet de distinguer 4 couches (Vs1 < 175 m/s, 175 m/s < Vs2 < 225 m/s, 225 m/s < Vs3 < 400 m/s et Vs4 >.400 m/s) qui présentent des variations d'épaisseur. Des profils de sismiques réflexion en ondes S acquis avec une source construite dans le cadre de ce travail, complètent et corroborent le modèle établi à partir de l'analyse de la dispersion des ondes de surface. Un réflecteur localisé entre 5 et 10 m de profondeur et associé à une vitesse de sommation de 180 m/s souligne notamment la géométrie de l'interface qui sépare la deuxième de la troisième couche du modèle établi à partir de l'analyse de la dispersion des ondes de surface. Abstract Landslides are one of the main natural hazards in mountainous regions. In Switzerland, landslides cause damages every year that impact infrastructures and have important financial costs. In depth understanding of sliding mechanisms may help limiting their impact. In particular, this can be achieved through a better knowledge of the internal structure of the landslide, the determination of its volume and its sliding surface or surfaces In a landslide, the disorganization and the presence of fractures in the displaced material generate a change of the physical parameters and in particular a decrease of the seismic velocities and of the material density. Therefoe, seismic methods are well adapted to the study of landslides. Among seismic methods, surface-wave dispersion analysis is a easy to implement. Through it, shearwave velocity variations with depth can be estimated without having to resort to an S-wave source and to horizontal geophones. Its 3-step implementation implies measurement of surface-wave dispersion with long arrays, determination of the dispersion curves and finally inversion of these curves. Velocity models obtained through this approach are only valid when the investigated medium does not include lateral variations. In practice, this assumption is seldom correct, in particular for landslides in which reshaped layers likely include strong lateral heterogeneities. To assess the possibility of determining dispersion curves from short array lengths we carried out tests measurements on a site (Arnex, VD) that includes a borehole. A 190 m long seismic profile was acquired in a valley carved into limestone and filled with 30 m of glacio-lacustrine sediments. The data acquired along this profile confirmed that the presence of lateral variations under the geophone array influences the dispersion-curve shape so much that it sometimes preventes the dispersion curves determination. Our approach to use the analysis of surface-wave dispersion on sites that include lateral variations consists in obtaining dispersion curves for a series of short length arrays; inverting each so obtained curve and interpolating the different obtained velocity model. The choice of the location as well as the geophone array length is important. It takes into account the location of the heterogeneities that are revealed by the seismic refraction interpretation of the data but also, the location of signal amplitude anomalies observed on maps that represent, for a given frequency, the measured amplitude in the shot position - receiver position domain. The procedure proposed by Lin and Lin (2007) turned out to be an efficient one to determine dispersion curves using short extension arrays. It consists in building a time-offset from an array of geophones with a wide offset range by gathering seismograms acquired with different source-to-receiver offsets. When assembling the different data, a phase correction is applied in order to reduce static phase error induced by lateral variation. To evaluate this correction, we suggest to calculate, for two successive shots, the cross power spectral density of common offset traces. On the Arnex site, 22 curves were determined with 10m in length geophone-arrays. We also took advantage of the borehole to acquire a S-wave vertical seismic profile. The S-wave velocity depth model derived from the vertical seismic profile interpretation is used as prior information in the inversion of the dispersion-curves. Finally a 2D velocity model was established from the analysis of the different dispersion curves. It reveals a 3-layer structure in good agreement with the observed lithologies in the borehole. In it a clay layer with a shear-wave of 175 m/s shear-wave velocity overlies a clayey-sandy till layer at 9 m depth that is characterized down to 14 m by a 300 m/s S-wave velocity; these deposits have a S-wave velocity of 400 m/s between depths of 14 to 20 m. The La Grand Combe landslide (Ballaigues, VD) occurs inside the Quaternary filling of a valley carved into Portlandien limestone. As at the Arnex site, the Quaternary deposits correspond to glaciolacustrine sediments. In the upper part of the landslide, the sliding surface is located at a depth of about 20 m that coincides with the discontinuity between Jurassian till and glacio-lacustrine deposits. At the toe of the landslide, we defined 14 dispersion curves along a 144 m long profile using 10 m long geophone arrays. The obtained curves are discontinuous and defined within a frequency range of 7 to 35 Hz. The use of a wide range of offsets (from 8 to 72 m) enabled us to determine 2 to 4 mode of propagation for each dispersion curve. Taking these higher modes into consideration for dispersion curve inversion allowed us to reach an investigation depth of about 20 m. A four layer 2D model was derived (Vs1< 175 m/s, 175 m/s <Vs2< 225 m/s, 225 m/s < Vs3 < 400 m/s, Vs4> 400 m/s) with variable layer thicknesses. S-wave seismic reflection profiles acquired with a source built as part of this work complete and the velocity model revealed by surface-wave analysis. In particular, reflector at a depth of 5 to 10 m associated with a 180 m/s stacking velocity image the geometry of the discontinuity between the second and third layer of the model derived from the surface-wave dispersion analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The visual cortex in each hemisphere is linked to the opposite hemisphere by axonal projections that pass through the splenium of the corpus callosum. Visual-callosal connections in humans and macaques are found along the V1/V2 border where the vertical meridian is represented. Here we identify the topography of V1 vertical midline projections through the splenium within six human subjects with normal vision using diffusion-weighted MR imaging and probabilistic diffusion tractography. Tractography seed points within the splenium were classified according to their estimated connectivity profiles to topographic subregions of V1, as defined by functional retinotopic mapping. First, we report a ventral-dorsal mapping within the splenium with fibers from ventral V1 (representing the upper visual field) projecting to the inferior-anterior corner of the splenium and fibers from dorsal V1 (representing the lower visual field) projecting to the superior-posterior end. Second, we also report an eccentricity gradient of projections from foveal-to-peripheral V1 subregions running in the anterior-superior to posterior-inferior direction, orthogonal to the dorsal-ventral mapping. These results confirm and add to a previous diffusion MRI study (Dougherty et al., 2005) which identified a dorsal/ventral mapping of human splenial fibers. These findings yield a more detailed view of the structural organization of the splenium than previously reported and offer new opportunities to study structural plasticity in the visual system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present study was to investigate the relative importance of flooding- and confinement-related environmentalfeatures in explaining macroinvertebrate trait structure and diversity in a pool of wetlands located in a Mediterranean riverfloodplain. To test hypothesized trait-environment relationships, we employed a recently implemented statistical procedure, thefourth-corner method. We found that flooding-related variables, mainly pH and turbidity, were related to traits that confer an abilityof the organism to resist flooding (e.g., small body-shape, protection of eggs) or recuperate faster after flooding (e.g., short life-span, asexual reproduction). In contrast, confinement-related variables, mainly temperature and organic matter, enhanced traits that allow organisms to interact and compete with other organisms (e.g., large size, sexual reproduction) and to efficiently use habitat and resources (e.g., diverse locomotion and feeding strategies). These results are in agreement with predictions made under the River Habitat Templet for lotic ecosystems, and demonstrate the ability of the fourth-corner method to test hypothesis that posit traitenvironment relationships. Trait diversity was slightly higher in flooded than in confined sites, whereas trait richness was not significantly different. This suggests that although trait structure may change in response to the main environmental factors, as evidenced by the fourth-corner method, the number of life-history strategies needed to persist in the face of such constraints remains more or less constant; only their relative dominance differs

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this manual is to guide operation of the Case Management Program for Frail Elders. After Background, Program Administration, Definitions, Consumer Eligibility, and Program Standards, the order follows the flow of a consumer entering the pro-gram from referral through ongoing case activities. The manual is written assuming the reader is the Case Manager. The effective date will appear in the bottom left hand corner of each page. This manual will be updated as needed via Iowa Aging Program Instructions (IAPI). This manual is used in conjunction with the Department of Human Services’ manuals which provide more detail about policies and procedures within the Medicaid elderly waiver program.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[cat] A Navas i Marín Solano es va demostrar la coincidència entre els equilibris de Nash i de Stackelberg per a una versi´o modificada del joc diferencial proposat por Lancaster (1973). Amb l’objectiu d’obtenir una solució interior, es van imposar restriccions importants sobre el valors dels paràmetres del model. En aquest treball estenem aquest resultat, en el límit en que la taxa de descompte és igual a zero, eliminant les restriccions i considerant totes les solucions possibles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using Monte Carlo simulations we study the dynamics of three-dimensional Ising models with nearest-, next-nearest-, and four-spin (plaquette) interactions. During coarsening, such models develop growing energy barriers, which leads to very slow dynamics at low temperature. As already reported, the model with only the plaquette interaction exhibits some of the features characteristic of ordinary glasses: strong metastability of the supercooled liquid, a weak increase of the characteristic length under cooling, stretched-exponential relaxation, and aging. The addition of two-spin interactions, in general, destroys such behavior: the liquid phase loses metastability and the slow-dynamics regime terminates well below the melting transition, which is presumably related with a certain corner-rounding transition. However, for a particular choice of interaction constants, when the ground state is strongly degenerate, our simulations suggest that the slow-dynamics regime extends up to the melting transition. The analysis of these models leads us to the conjecture that in the four-spin Ising model domain walls lose their tension at the glassy transition and that they are basically tensionless in the glassy phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a new terrane subdivision of Nicaragua and Northern Costa Rica, based on Upper Triassic to Upper Cretaceous radiolarian biochronology of ribbon radiolarites, the newly studied Siuna Serpentinite Mélange, and published 40Ar/39Ar dating and geochemistry of mafic and ultramafic igneous rock units of the area. The new Mesquito Composite Oceanic Terrane (MCOT) comprises the southern half of the Chortis Block, that was assumed to be a continental fragment of N-America. The MCOT is defined by 4 corner localities characterized by ultramafic and mafic oceanic rocks and radiolarites of Late Triassic, Jurassic and Early Cretaceous age: 1. The Siuna Serpentinite Mélange (NE-Nicaragua), 2. The El Castillo Mélange (Nicaragua/Costa Rica border), 3.The Santa Elena Ultramafics (N-Costa Rica) and, 4. DSDP Legs 67/84. 1. The Siuna Serpentinite Mélange contains, high pressure metamorphic mafics and Middle Jurassic (Bajocian-Bathonian) radiolarites in original, sedimentary contact with arc-metandesites. The Siuna Mélange also contains Upper Jurassic black detrital chert formed in a marginal (fore-arc?) basin shortly before subduction. A phengite 40Ar/39Ar -cooling age dates the exhumation of the high pressure rocks as 139 Ma (earliest Cretaceous). 2. The El Castillo Mélange comprises a radiolarite block tectonically embedded in serpentinite that yielded a diverse Rhaetian (latest Triassic) radiolarian assemblage, the oldest fossils recovered so far from S-Central America. 3. The Santa Elena Ultramafics of N-Costa Rica together with the serpentinite outcrops near El Castillo (2) in Southern Nicaragua, are the southernmost outcrops of the MCOT. The Santa Elena Unit (3) itself is still undated, but it is thrust onto the middle Cretaceous Santa Rosa Accretionary Complex (SRAC), that contains Lower to Upper Jurassic, highly deformed radiolarite blocks, probably reworked from the MCOT, which was the upper plate with respect to the SRAC. 4. Serpentinites, metagabbros and basalts have long been known from DSDP Leg 67/84 (3), drilled off Guatemala in the Nicaragua-Guatemala forearc basement. They have been restudied and reveal 40Ar/39Ar dated Upper Triassic to middle Cretaceous enriched Ocean Island Basalts and Jurassic to Lower Cretaceous depleted Island arc rocks of probable Pacific origin. The area between localities 1-4 is largely covered by Tertiary to Recent arcs, but we suspect that its basement is made of oceanic/accreted terranes. Earthquake seismic studies indicate an ill-defined, shallow Moho in this area. The MCOT covers most of Nicaragua and could extend to Guatemala to the W and form the Lower (southern) Nicaragua Rise to the NE. Some basement complexes of Jamaica, Hispaniola and Puerto Rico may also belong to the MCOT. The Nicoya Complex s. str. has been regarded as an example of Caribbean crust and the Caribbean Large Igneous Province (CLIP). However, 40Ar/39Ar - dates on basalts and intrusives indicate ages as old as Early Cretaceous. Highly deformed Jurassic and Lower Cretaceous radiolarites occur as blocks within younger intrusives and basalts. Our interpretation is that radiolarites became first accreted to the MCOT, then became reworked into the Nicoya Plateau in Late Cretaceous times. This implies that the Nicoya Plateau formed along the Pacific edge of the MCOT, independent form the CLIP and most probably unrelated with he Galapagos hotspot. No Jurassic radiolarite, no older sediment age than Coniacian-Santonian, and no older 40Ar/39Ar age than 95 Ma is known from S-Central America between SE of Nicoya and Colombia. For us this area represents the trailing edge of the CLIP s. str.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[cat] A Navas i Marín Solano es va demostrar la coincidència entre els equilibris de Nash i de Stackelberg per a una versi´o modificada del joc diferencial proposat por Lancaster (1973). Amb l’objectiu d’obtenir una solució interior, es van imposar restriccions importants sobre el valors dels paràmetres del model. En aquest treball estenem aquest resultat, en el límit en que la taxa de descompte és igual a zero, eliminant les restriccions i considerant totes les solucions possibles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Browse through this guide and you’ll find the distinct flavor of what is available along each byway. Discover recreational, historic, cultural and scenic attractions using the maps and lists provided in the guide. You’ll find numbered attractions for each byway in or near the town listed. For a comprehensive list of byway features, visit www.iowabyways.org. Friendly local contacts are provided to help you along the way. Iowa Transportation Maps clearly tracking all the Iowa byways with red dotted lines are available at Iowa’s official welcome centers. Traveling Iowa’s byways you will experience small town America, while enjoying diverse landscapes and unique landforms that have been shaped over thousands of years. Iowa’s cultural heritage also plays a major role across all 11 byways, boasting hundreds of historic sites, national landmarks and interpretive centers, each telling Iowa’s stories from the first Native Americans through European immigrants to modern times. Glaciers once covered much of Iowa, shaping the broad flat plains of the prairie. These massive sheets of ice missed the northeast corner of the state, leaving the land along the Driftless Area Byway rugged and hilly with rock outcroppings, springs and cold water trout streams. Rivers coursed their way through the land, carving deep furrows in some places and leaving gently rolling hills in others. In western Iowa, wind has shaped fine sand into the impressive Loess Hills, a rare land form found in only one other place on earth. Iowa’s two national scenic byways and nine state byways offer unique varieties of scenic features, and more for you to see and do. View three states from atop a Mississippi River bluff, stop at a modern art museum and then tour a working farm. Explore a historic mill, visit a national aquarium, take a boat ride in a cave, purchase locally crafted pottery and wares from local artisans or trace the footsteps of Lewis and Clark. Experience the actual wagon ruts of the Mormon Trail, ride your bike 13 stories high, canoe a water trail, star gaze under Iowa’s darkest sky, and marvel at mounds built by prehistoric cultures. Agriculture wraps Iowa’s byways with an abundance of farmland vistas and fills Iowa lands with ever-changing crops and activities for you to “harvest.” You’ll see croplands on the vast flat plains and farmsteads sprinkled across rolling hills reminiscent of a Grant Wood painting. Along the way, you might wander in a corn maze, rest at a bed and breakfast, study farming in museums, discover the Iowa barn quilt collection or visit a working Amish farm. When you are ready to step outside your vehicle, you’ll find much more to do and see. Prairie, forests, rivers and public lands are abundant along Iowa’s byways; providing opportunities for you to stop and play in the outdoors with hiking, biking, kayaking and trout fishing. Classic hometowns with pride for their unique lore and offerings are found all along the byways. They invite you to taste local food, enjoy their architecture, and immerse yourself in the rich history and culture that defines them. Why not plan your next journey off the beaten path? No matter how you choose to make the most of every moment, we know that time spent along Iowa’s byways is sure to grow your love for Iowa’s diverse, beautiful vistas and authentic communities. Happy driving!

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Iowa’s first annual Energy Independence Plan kicks off a new era of state leadership in energy transformation. Supported by Governor Chet Culver, Lieutenant Governor Patty Judge, and the General Assembly, the Office of Energy Independence was established in 2007 to coordinate state activities for energy independence. The commitment of the state to lead by example creates opportunities for state government to move boldly to achieve its goals, track its progress, measure the results, and report the findings. In moving to energy independence, the active engagement of every Iowan will be sought as the state works in partnership with others in achieving the goals. While leading ongoing efforts within the state, Iowa can also show the nation how to effectively address the critical, complex challenges of shifting to a secure energy future of affordable energy, cost-effective efficiency, reliance on sustainable energy, and enhanced natural resources and environment. In accordance with House File 918, “the plan shall provide cost effective options and strategies for reducing the state’s consumption of energy, dependence on foreign sources of energy, use of fossil fuels, and greenhouse gas emissions. The options and strategies developed in the plan shall provide for achieving energy independence from foreign sources of energy by the year 2025.” Energy independence is a term which means different things to different people. We use the term to mean that we are charting our own course in the emerging energy economy. Iowa can chart its own course by taking advantage of its resources: a well-educated population and an abundance of natural resources, including rich soil, abundant surface and underground water, and consistent wind patterns. Charting our own course also includes further developing our in-state industry, capturing renewable energy, and working toward improved energy efficiency. Charting our own course will allow Iowa to manage its economic destiny while protecting our environment, while creating new, “green collar” industries in every corner of Iowa. Today Iowa is in a remarkable position to capitalize on the current situation globally and at home. Energy drives the economy and has impacts on the environment, undeniable links that are integral for energy security and independence. With the resources available within the state, the combination of significant global changes in energy and research leading to new technologies that continue to drive down the costs of sustainable energy, Iowa can take bold strides toward the goal of energy independence by 2025. The Office of Energy Independence, with able assistance from hundreds of individuals, organizations, agencies, and advisors, presents its plan for Iowa’s Energy Independence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pieces of Iowa’s Past, published by the Iowa State Capitol Tour Guides weekly during the legislative session, features historical facts about Iowa, the Capitol, and the early workings of state government. All historical publications are reproduced here with the actual spelling, punctuation, and grammar retained. April 16, 2008 THIS WEEK: Proceedings at the laying of the Iowa State Capitol corner ston

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The south-western part of the Iberian Peninsula, including the southern branch of the Iberian Massif, has recently been the subject of several magnetotelluric (MT) studies. This area is made up of three different tectonic terranes: the South Portuguese Zone (SPZ), the Ossa Morena Zone (OMZ) and the Central Iberian Zone (CIZ). The boundaries between these zones are considered to be sutures, which appear as high electrical conductivity anomalies in the MT surveys. The OMZ is characterised by a conductive layer at middle-lower crustal levels. To investigate the continuity of this conductive layer into the CIZ, a new MT profile was carried out. This 75-km long ENE profile goes through the boundary between the OMZ and the CIZ. The results of a two-dimensional magnetotelluric inversion revealed a high-conductivity anomaly in the transition OMZ/CIZ (the so-called Central Unit), which is interpreted as due to interconnected graphite along shear planes. High-conductivity anomalies appeared in the middle crust of the CIZ, whose geometry and location are consistent with the conductive layer previously found in the OMZ, thus confirming the prolongation of the conductive layer into the CIZ. The top of this layer correlated spatially with a broad reflector detected by a seismic profile previously acquired in the same area. This, together with other geological and petrological evidence, points to a common origin for both features.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments with early entry light sawing of Portland cement concrete (PCC) contraction joints began in Iowa in 1989. Since that time, changes in early sawing equipment have occurred as well as changes in specifications for sawing. The option to use early sawing for transverse contraction joints was specified in 1992. A problem happening occasionally with early sawing was the break out of some of the concrete around the end of the joint as the saw blade approached the edge of the slab. To prevent this, it was proposed that the sawing would terminate approximately 1/2" to 3/4" before the edge of the slab, creating a "short joint". This procedure would also leave a concrete "dam" to prevent the run-out and waste of the hot liquid joint sealant onto the shoulder. It would also eliminate the need for the labor and material for applying a duct tape dam at the open ends of each sawed joint to stop hot liquid sealant run-out Agreements were made with the contractor to apply the "short joint" technique for 1 day of paving. The evaluation and results are compared with an adjoining control section. The research found no negative aspects from sawing the "short joint". Three specific findings were noted. They are the following: 1) No joint end "blow-out" spalls of concrete occurred. 2) The need for the duct tape dam to stop liquid sealant overflow was eliminated. 3) Joint end corner spalls appear to be caused mainly by construction shouldering operations equipment. The "short joint" sawing technique can be routinely applied to early entry sawed transverse contraction joints with expectations of only positive results.