949 resultados para Constant Loading Rate


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A continuous age model for the brief climate excursion at the Paleocene-Eocene boundary has been constructed by assuming a constant flux of extraterrestrial 3He (3He[ET]) to the seafloor. 3He[ET] measurements from ODP Site 690 provide quantitative evidence for the rapid onset (rated age models indicating extremely rapid release of isotopically light carbon, possibly from seafloor methane hydrate, as the proximal cause of the event. However, the 3He[ET] technique indicates a previously unrecognized and extreme increase in sedimentation rate coincident with the return of climate proxies to pre-event values. The 3He[ET]-based age model thus suggests a far more rapid recovery from the climatic perturbation than previously proposed or predicted on the basis of the modern carbon cycle, and so may indicate additional or accelerated mechanisms of carbon removal from the ocean-atmosphere system during this period. 3He[ET] was also measured at ODP Site 1051 to test the validity of the Site 690 chronology. Comparison of these data sets seems to require removal of several tens of kyr of sediment within the climatic excursion at Site 1051, an observation consistent with sediment structures and previous age modeling efforts. The Site 1051 age model shows a ~30 kyr period in which climate proxies return toward pre-event values, after which they remain invariant for ~80 kyr. If this rise represents the recovery interval identified at Site 690, then the 3HeET-based age models of the two sites are in good agreement. However, alternative interpretations are possible, and work on less disrupted sites is required to evaluate the reliability of the proposed new chronology of the climate excursion. Regardless of these details, this work shows that the 3HeET technique can provide useful independent evidence for the development and testing of astronomically calibrated age models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acidification of the oceans by increasing anthropogenic CO2 emissions will cause a decrease in biogenic calcification and an increase in carbonate dissolution. Previous studies have suggested that carbonate dissolution will occur in polar regions and in the deep sea where saturation state with respect to carbonate minerals (Omega) will be <1 by 2100. Recent reports demonstrate nocturnal carbonate dissolution of reefs, despite a Omega a (aragonite saturation state) value of >1. This is probably related to the dissolution of reef carbonate (Mg-calcite), which is more soluble than aragonite. However, the threshold of Omega for the dissolution of natural sediments has not been clearly determined. We designed an experimental dissolution system with conditions mimicking those of a natural coral reef, and measured the dissolution rates of aragonite in corals, and of Mg-calcite excreted by other marine organisms, under conditions of Omega a > 1, with controlled seawater pCO2. The experimental data show that dissolution of bulk carbonate sediments sampled from a coral reef occurs at Omega a values of 3.7 to 3.8. Mg-calcite derived from foraminifera and coralline algae dissolves at Omega a values between 3.0 and 3.2, and coralline aragonite starts to dissolve when Omega a = 1.0. We show that nocturnal carbonate dissolution of coral reefs occurs mainly by the dissolution of foraminiferans and coralline algae in reef sediments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The response of three coccolithophores (Emiliania huxleyi, Calcidiscus leptoporus and Syracosphaera pulchra) to elevated partial pressure (pCO2) of carbon dioxide was investigated in batch cultures. For the first time, we also report on the response of the non calcifying (haploid) life stage of these three species. The growth rate, cell size, inorganic (PIC) and organic carbon (POC) of both life stages were measured at two different pCO2 (400and 760 ppm) and their organic and inorganic carbon production calculated. The two lifestages within the same species generally exhibited a similar response to elevated pCO2, theresponse of the haploid stage being often more pronounced than that of the diploid stage. Thegrowth rate was consistently higher at higher pCO2 but the response of other processes varied among species. The calcification rate of C. leptoporus and of S. pulchra did not change at elevated pCO2 while increased in E. huxleyi. The POC production as well as the cell size of both life stages of S. pulchra and of the haploid stage of E. huxleyi markedly decreased at elevated pCO2. It remained unaltered in the diploid stage of E. huxleyi and C. leptoporus and increased in the haploid stage of the latter. The PIC:POC ratio increased in E. huxleyi and was constant in C. leptoporus and S. pulchra. These results suggest that the non-calcifying stage, is more responsive than the calcifying stage and that the most versatile genera will proliferate in a more acidic ocean rather than all coccolithophores will decline.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of decreasing aragonite saturation state (Omega Arag) of seawater (elevated pCO2) on calcification rates of Acropora muricata was studied using nubbins prepared from parent colonies located at two sites of La Saline reef (La Réunion Island, western Indian Ocean): a back-reef site (BR) affected by nutrient-enriched groundwater discharge (mainly nitrate), and a reef flat site (RF) with low terrigenous inputs. Protein and chlorophyll a content of the nubbins, as well as zooxanthellae abundance, were lower at RF than BR. Nubbins were incubated at ~27°C over 2 h under sunlight, in filtered seawater manipulated to get differing initial pCO2 (1,440-340 µatm), Omega Arag (1.4-4.0), and dissolved inorganic carbon (DIC) concentrations (2,100-1,850 µmol/kg). Increasing DIC concentrations at constant total alkalinity (AT) resulted in a decrease in Omega Arag and an increase in pCO2. AT at the beginning of the incubations was kept at a natural level of 2,193 ± 6 µmol/kg (mean ± SD). Net photosynthesis (NP) and calcification were calculated from changes in pH and AT during the incubations. Calcification decrease in response to doubling pCO2 relative to preindustrial level was 22% for RF nubbins. When normalized to surface area of the nubbins, (1) NP and calcification were higher at BR than RF, (2) NP increased in high pCO2 treatments at BR compared to low pCO2 treatments, and (3) calcification was not related to Omega Arag at BR. When normalized to NP, calcification was linearly related to Omega Arag at both sites, and the slopes of the relationships were not significantly different. The increase in NP at BR in the high pCO2 treatments may have increased calcification and thus masked the negative effect of low Omega Arag on calcification. Removing the effect of NP variations at BR showed that calcification declined in a similar manner with decreased Omega Arag (increased pCO2) whatever the nutrient loading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uptake of half of the fossil fuel CO2 into the ocean causes gradual seawater acidification. This has been shown to slow down calcification of major calcifying groups, such as corals, foraminifera, and coccolithophores. Here we show that two of the most productive marine calcifying species, the coccolithophores Coccolithus pelagicus and Calcidiscus leptoporus, do not follow the CO2-related calcification response previously found. In batch culture experiments, particulate inorganic carbon (PIC) of C. leptoporus changes with increasing CO2 concentration in a nonlinear relationship. A PIC optimum curve is obtained, with a maximum value at present-day surface ocean pCO2 levels (?360 ppm CO2). With particulate organic carbon (POC) remaining constant over the range of CO2 concentrations, the PIC/POC ratio also shows an optimum curve. In the C. pelagicus cultures, neither PIC nor POC changes significantly over the CO2 range tested, yielding a stable PIC/POC ratio. Since growth rate in both species did not change with pCO2, POC and PIC production show the same pattern as POC and PIC. The two investigated species respond differently to changes in the seawater carbonate chemistry, highlighting the need to consider species-specific effects when evaluating whole ecosystem responses. Changes of calcification rate (PIC production) were highly correlated to changes in coccolith morphology. Since our experimental results suggest altered coccolith morphology (at least in the case of C. leptoporus) in the geological past, coccoliths originating from sedimentary records of periods with different CO2 levels were analyzed. Analysis of sediment samples was performed on six cores obtained from locations well above the lysocline and covering a range of latitudes throughout the Atlantic Ocean. Scanning electron micrograph analysis of coccolith morphologies did not reveal any evidence for significant numbers of incomplete or malformed coccoliths of C. pelagicus and C. leptoporus in last glacial maximum and Holocene sediments. The discrepancy between experimental and geological results might be explained by adaptation to changing carbonate chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The response of Emiliania huxleyi (Lohmann) W. W. Hay et H. Mohler, Calcidiscus leptoporus (G. Murray et V. H. Blackman) J. Schiller, andSyracosphaera pulchra Lohmann to elevated partial pressure of carbon dioxide (pCO2) was investigated in batch cultures. We reported on the response of both haploid and diploid life stages of these three species. Growth rate, cell size, particulate inorganic carbon (PIC), and particulate organic carbon (POC) of both life stages were measured at two different pCO2 (400 and 760 parts per million [ppm]), and their organic and inorganic carbon production were calculated. The two life stages within the same species generally exhibited a similar response to elevated pCO2, the response of the haploid stage being often more pronounced than that of the diploid stage. The growth rate was consistently higher at elevated pCO2, but the response of other processes varied among species. Calcification rate of C. leptoporusand of S. pulchra did not change at elevated pCO2, whereas it increased in E. huxleyi. POC production and cell size of both life stages of S. pulchra and of the haploid stage of E. huxleyi markedly decreased at elevated pCO2. It remained unaltered in the diploid stage of E. huxleyi and C. leptoporus and increased in the haploid stage of the latter. The PIC:POC ratio increased in E. huxleyi and was constant in C. leptoporus and S. pulchra. Elevated pCO2 has a significant effect on these three coccolithophore species, the haploid stage being more sensitive. This effect must be taken into account when predicting the fate of coccolithophores in the future ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vertical permeability and sediment consolidation measurements were taken on seven whole-round drill cores from Sites 1253 (three samples), 1254 (one sample), and 1255 (three samples) drilled during Ocean Drilling Program Leg 205 in the Middle America Trench off of Costa Rica's Pacific Coast. Consolidation behavior including slopes of elastic rebound and virgin compression curves (Cc) was measured by constant rate of strain tests. Permeabilities were determined from flow-through experiments during stepped-load tests and by using coefficient of consolidation (Cv) values continuously while loading. Consolidation curves and the Casagrande method were used to determine maximum preconsolidation stress. Elastic slopes of consolidation curves ranged from 0.097 to 0.158 in pelagic sediments and 0.0075 to 0.018 in hemipelagic sediments. Cc values ranged from 1.225 to 1.427 for pelagic carbonates and 0.504 to 0.826 for hemipelagic clay-rich sediments. In samples consolidated to an axial stress of ~20 MPa, permeabilities determined by flow-through experiments ranged from a low value of 7.66 x 10**-20 m**2 in hemipelagic sediments to a maximum value of 1.03 x 10**-16 m**2 in pelagic sediments. Permeabilities calculated from Cv values in the hemipelagic sediments ranged from 4.81 x 10**-16 to 7.66 x 10**-20 m**2 for porosities 49.9%-26.1%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

GEOMAR's autonomous underwater vehicle (AUV Abyss REMUS 6000) was deployed within the framework of a multi-platform experiment in June 2012 with R/V Maria S. Merian cruise MSM21/1b at about 180 km downstream of Denmark Strait. The scientific payload included a pumped Seabird 49 FastCAT CTD system, a paroscientific pressure sensor, and shear and temperature microstructure profiler from Rockland Scientific Inc.. In total, six of eight AUV dives were carried out successfully. Aborts on three dives were caused by strong counter currents the AUV experienced in the Denmark Strait Overflow plume, which made the AUV fail to reach its waypoints on schedule. During all missions the AUV was programmed to dive at constant depth levels along? straight legs approximately parallel to chosen isobaths with a constant speed of 1.6 m s-1 through the water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show here that CO2 partial pressure (pCO2) and temperature significantly interact on coral physiology. The effects of increased pCO2 and temperature on photosynthesis, respiration and calcification rates were investigated in the scleractinian coral Stylophora pistillata. Cuttings were exposed to temperatures of 25°C or 28°C and to pCO2 values of ca. 460 or 760 muatm for 5 weeks. The contents of chlorophyll c2 and protein remained constant throughout the experiment, while the chlorophyll a content was significantly affected by temperature, and was higher under the 'high-temperature-high-pCO2' condition. The cell-specific density was higher at 'high pCO2' than at 'normal pCO2' (1.7 vs. 1.4). The net photosynthesis normalized per unit protein was affected by both temperature and pCO2, whereas respiration was not affected by the treatments. Calcification decreased by 50% when temperature and pCO2 were both elevated. Calcification under normal temperature did not change in response to an increased pCO2. This is not in agreement with numerous published papers that describe a negative relationship between marine calcification and CO2. The confounding effect of temperature has the potential to explain a large portion of the variability of the relationship between calcification and pCO2 reported in the literature, and warrants a re-evaluation of the projected decrease of marine calcification by the year 2100.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of fly ash (FA) as an admixture to concrete is broadly extended for two main reasons: the reduction of costs that supposes the substitution of cement and the micro structural changes motivated by the mineral admixture. Regarding this second point, there is a consensus that considers that the ash generates a more compact concrete and a reduction in the size of the pore. However, the measure in which this contributes to the pozzolanic activity or as filler is not well defined. There is also no justification to the influence of the physical parameters, fineness of the grain and free water, in its behavior. This work studies the use of FA as a partial substitute of the cement in concretes of different workability (dry and wet) and the influence in the reactivity of the ash. The concrete of dry consistency which serves as reference uses a cement dose of 250 Kg/m 3 and the concrete of fluid consistency utilized a dose of cement of 350 Kg/m 3 . Two trademark of Portland Cement Type 1 were used. The first reached the resistant class for its fineness of grain and the second one for its composition. Moreover, three doses of FA have been used, and the water/binder ratio was constant in all the mixtures. We have studied the mechanical properties and the micro-structure of the concretes by means of compressive strength tests, mercury intrusion porosimetry (MIP) and thermal analysis (TA). The results of compressive strength tests allow us to observe that concrete mixtures with cements of the same classification and similar dosage of binder do not present the same mechanical behavior. These results show that the effective water/binder ratio has a major role in the development of the mechanical properties of concrete. The study of different dosages using TA, thermo-gravimetry and differential thermal analysis, revealed that the portlandite content is not restrictive in any of the dosages studied. Again, this proves that the rheology of the material influences the reaction rate and content of hydrated cement products. We conclude that the available free water is determinant in the efficiency of pozzolanic reaction. It is so that in accordance to the availability of free water, the ashes can react as an active admixture or simply change the porous distribution. The MIP shows concretes that do not exhibit significant changes in their mechanical behavior, but have suffered significant variation in their porous structure

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El hormigón es uno de los materiales de construcción más empleados en la actualidad debido a sus buenas prestaciones mecánicas, moldeabilidad y economía de obtención, entre otras ventajas. Es bien sabido que tiene una buena resistencia a compresión y una baja resistencia a tracción, por lo que se arma con barras de acero para formar el hormigón armado, material que se ha convertido por méritos propios en la solución constructiva más importante de nuestra época. A pesar de ser un material profusamente utilizado, hay aspectos del comportamiento del hormigón que todavía no son completamente conocidos, como es el caso de su respuesta ante los efectos de una explosión. Este es un campo de especial relevancia, debido a que los eventos, tanto intencionados como accidentales, en los que una estructura se ve sometida a una explosión son, por desgracia, relativamente frecuentes. La solicitación de una estructura ante una explosión se produce por el impacto sobre la misma de la onda de presión generada en la detonación. La aplicación de esta carga sobre la estructura es muy rápida y de muy corta duración. Este tipo de acciones se denominan cargas impulsivas, y pueden ser hasta cuatro órdenes de magnitud más rápidas que las cargas dinámicas impuestas por un terremoto. En consecuencia, no es de extrañar que sus efectos sobre las estructuras y sus materiales sean muy distintos que las que producen las cargas habitualmente consideradas en ingeniería. En la presente tesis doctoral se profundiza en el conocimiento del comportamiento material del hormigón sometido a explosiones. Para ello, es crucial contar con resultados experimentales de estructuras de hormigón sometidas a explosiones. Este tipo de resultados es difícil de encontrar en la literatura científica, ya que estos ensayos han sido tradicionalmente llevados a cabo en el ámbito militar y los resultados obtenidos no son de dominio público. Por otra parte, en las campañas experimentales con explosiones llevadas a cabo por instituciones civiles el elevado coste de acceso a explosivos y a campos de prueba adecuados no permite la realización de ensayos con un elevado número de muestras. Por este motivo, la dispersión experimental no es habitualmente controlada. Sin embargo, en elementos de hormigón armado sometidos a explosiones, la dispersión experimental es muy acusada, en primer lugar, por la propia heterogeneidad del hormigón, y en segundo, por la dificultad inherente a la realización de ensayos con explosiones, por motivos tales como dificultades en las condiciones de contorno, variabilidad del explosivo, o incluso cambios en las condiciones atmosféricas. Para paliar estos inconvenientes, en esta tesis doctoral se ha diseñado un novedoso dispositivo que permite ensayar hasta cuatro losas de hormigón bajo la misma detonación, lo que además de proporcionar un número de muestras estadísticamente representativo, supone un importante ahorro de costes. Con este dispositivo se han ensayado 28 losas de hormigón, tanto armadas como en masa, de dos dosificaciones distintas. Pero además de contar con datos experimentales, también es importante disponer de herramientas de cálculo para el análisis y diseño de estructuras sometidas a explosiones. Aunque existen diversos métodos analíticos, hoy por hoy las técnicas de simulación numérica suponen la alternativa más avanzada y versátil para el cálculo de elementos estructurales sometidos a cargas impulsivas. Sin embargo, para obtener resultados fiables es crucial contar con modelos constitutivos de material que tengan en cuenta los parámetros que gobiernan el comportamiento para el caso de carga en estudio. En este sentido, cabe destacar que la mayoría de los modelos constitutivos desarrollados para el hormigón a altas velocidades de deformación proceden del ámbito balístico, donde dominan las grandes tensiones de compresión en el entorno local de la zona afectada por el impacto. En el caso de los elementos de hormigón sometidos a explosiones, las tensiones de compresión son mucho más moderadas, siendo las tensiones de tracción generalmente las causantes de la rotura del material. En esta tesis doctoral se analiza la validez de algunos de los modelos disponibles, confirmando que los parámetros que gobiernan el fallo de las losas de hormigón armado ante explosiones son la resistencia a tracción y su ablandamiento tras rotura. En base a los resultados anteriores se ha desarrollado un modelo constitutivo para el hormigón ante altas velocidades de deformación, que sólo tiene en cuenta la rotura por tracción. Este modelo parte del de fisura cohesiva embebida con discontinuidad fuerte, desarrollado por Planas y Sancho, que ha demostrado su capacidad en la predicción de la rotura a tracción de elementos de hormigón en masa. El modelo ha sido modificado para su implementación en el programa comercial de integración explícita LS-DYNA, utilizando elementos finitos hexaédricos e incorporando la dependencia de la velocidad de deformación para permitir su utilización en el ámbito dinámico. El modelo es estrictamente local y no requiere de remallado ni conocer previamente la trayectoria de la fisura. Este modelo constitutivo ha sido utilizado para simular dos campañas experimentales, probando la hipótesis de que el fallo de elementos de hormigón ante explosiones está gobernado por el comportamiento a tracción, siendo de especial relevancia el ablandamiento del hormigón. Concrete is nowadays one of the most widely used building materials because of its good mechanical properties, moldability and production economy, among other advantages. As it is known, it has high compressive and low tensile strengths and for this reason it is reinforced with steel bars to form reinforced concrete, a material that has become the most important constructive solution of our time. Despite being such a widely used material, there are some aspects of concrete performance that are not yet fully understood, as it is the case of its response to the effects of an explosion. This is a topic of particular relevance because the events, both intentional and accidental, in which a structure is subjected to an explosion are, unfortunately, relatively common. The loading of a structure due to an explosive event occurs due to the impact of the pressure shock wave generated in the detonation. The application of this load on the structure is very fast and of very short duration. Such actions are called impulsive loads, and can be up to four orders of magnitude faster than the dynamic loads imposed by an earthquake. Consequently, it is not surprising that their effects on structures and materials are very different than those that cause the loads usually considered in engineering. This thesis broadens the knowledge about the material behavior of concrete subjected to explosions. To that end, it is crucial to have experimental results of concrete structures subjected to explosions. These types of results are difficult to find in the scientific literature, as these tests have traditionally been carried out by armies of different countries and the results obtained are classified. Moreover, in experimental campaigns with explosives conducted by civil institutions the high cost of accessing explosives and the lack of proper test fields does not allow for the testing of a large number of samples. For this reason, the experimental scatter is usually not controlled. However, in reinforced concrete elements subjected to explosions the experimental dispersion is very pronounced. First, due to the heterogeneity of concrete, and secondly, because of the difficulty inherent to testing with explosions, for reasons such as difficulties in the boundary conditions, variability of the explosive, or even atmospheric changes. To overcome these drawbacks, in this thesis we have designed a novel device that allows for testing up to four concrete slabs under the same detonation, which apart from providing a statistically representative number of samples, represents a significant saving in costs. A number of 28 slabs were tested using this device. The slabs were both reinforced and plain concrete, and two different concrete mixes were used. Besides having experimental data, it is also important to have computational tools for the analysis and design of structures subjected to explosions. Despite the existence of several analytical methods, numerical simulation techniques nowadays represent the most advanced and versatile alternative for the assessment of structural elements subjected to impulsive loading. However, to obtain reliable results it is crucial to have material constitutive models that take into account the parameters that govern the behavior for the load case under study. In this regard it is noteworthy that most of the developed constitutive models for concrete at high strain rates arise from the ballistic field, dominated by large compressive stresses in the local environment of the area affected by the impact. In the case of concrete elements subjected to an explosion, the compressive stresses are much more moderate, while tensile stresses usually cause material failure. This thesis discusses the validity of some of the available models, confirming that the parameters governing the failure of reinforced concrete slabs subjected to blast are the tensile strength and softening behaviour after failure. Based on these results we have developed a constitutive model for concrete at high strain rates, which only takes into account the ultimate tensile strength. This model is based on the embedded Cohesive Crack Model with Strong Discontinuity Approach developed by Planas and Sancho, which has proved its ability in predicting the tensile fracture of plain concrete elements. The model has been modified for its implementation in the commercial explicit integration program LS-DYNA, using hexahedral finite elements and incorporating the dependence of the strain rate, to allow for its use in dynamic domain. The model is strictly local and does not require remeshing nor prior knowledge of the crack path. This constitutive model has been used to simulate two experimental campaigns, confirming the hypothesis that the failure of concrete elements subjected to explosions is governed by their tensile response, being of particular relevance the softening behavior of concrete.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth of the Internet has increased the need for scalable congestion control mechanisms in high speed networks. In this context, we propose a rate-based explicit congestion control mechanism with which the sources are provided with the rate at which they can transmit. These rates are computed with a distributed max-min fair algorithm, SLBN. The novelty of SLBN is that it combines two interesting features not simultaneously present in existing proposals: scalability and fast convergence to the max-min fair rates, even under high session churn. SLBN is scalable because routers only maintain a constant amount of state information (only three integer variables per link) and only incur a constant amount of computation per protocol packet, independently of the number of sessions that cross the router. Additionally, SLBN does not require processing any data packet, and it converges independently of sessions' RTT. Finally, by design, the protocol is conservative when assigning rates, even in the presence of high churn, which helps preventing link overshoots in transient periods. We claim that, with all these features, our mechanism is a good candidate to be used in real deployments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermal and mechanical behaviour of isotactic polypropylene (iPP) nanocomposites reinforced with different loadings of inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles was investigated. The IF-WS2 noticeably enhanced the polymer stiffness and strength, ascribed to their uniform dispersion, the formation of a large nanoparticle?matrix interface combined with a nucleating effect on iPP crystallization. Their reinforcement effect was more pronounced at high temperatures. However, a drop in ductility and toughness was found at higher IF-WS2 concentrations. The tensile behaviour of the nanocomposites was extremely sensitive to the strain rate and temperature, and their yield strength was properly described by the Eyring s equation. The activation energy increased while the activation volume decreased with increasing nanoparticle loading, indicating a reduction in polymer chain motion. The nanoparticles improved the thermomechanical properties of iPP: raised the glass transition and heat deflection temperatures while decreased the coefficient of thermal expansion. The nanocomposites also displayed superior flame retardancy with longer ignition time and reduced peak heat release rate. Further, a gradual rise in thermal conductivity was found with increasing IF-WS2 loading both in the glassy and rubbery states. The results presented herein highlight the benefits and high potential of using IF-nanoparticles for enhancing the thermomechanical properties of thermoplastic polymers compared to other nanoscale fillers.