907 resultados para Computational Simulator


Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are some approaches that take advantage of unused computational resources in the Internet nodes - users´ machines. In the last years , the peer-to-peer networks (P2P) have gaining a momentum mainly due to its support for scalability and fault tolerance. However, current P2P architectures present some problems such as nodes overhead due to messages routing, a great amount of nodes reconfigurations when the network topology changes, routing traffic inside a specific network even when the traffic is not directed to a machine of this network, and the lack of a proximity relationship among the P2P nodes and the proximity of these nodes in the IP network. Although some architectures use the information about the nodes distance in the IP network, they use methods that require dynamic information. In this work we propose a P2P architecture to fix the problems afore mentioned. It is composed of three parts. The first part consists of a basic P2P architecture, called SGrid, which maintains a relationship of nodes in the P2P network with their position in the IP network. Its assigns adjacent key regions to nodes of a same organization. The second part is a protocol called NATal (Routing and NAT application layer) that extends the basic architecture in order to remove from the nodes the responsibility of routing messages. The third part consists of a special kind of node, called LSP (Lightware Super-Peer), which is responsible for maintaining the P2P routing table. In addition, this work also presents a simulator that validates the architecture and a module of the Natal protocol to be used in Linux routers

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays there has been a major breakthrough in the aerospace area, with regard to rocket launches to research, experiments, telemetry system, remote sensing, radar system (tracking and monitoring), satellite communications system and insertion of satellites in orbit. This work aims at the application of a circular cylindrical microstrip antenna, ring type, and other cylindrical rectangular in structure of a rocket or missile to obtain telemetry data, operating in the range of 2 to 4 GHz, in S-band. Throughout this was developed just the theoretical analysis of the Transverse transmission line method which is a method of rigorous analysis in spectral domain, for use in rockets and missiles. This analyzes the spread in the direction "ρ" , transverse to dielectric interfaces "z" and "φ", for cylindrical coordinates, thus taking the general equations of electromagnetic fields in function of e [1]. It is worth mentioning that in order to obtain results, simulations and analysis of the structure under study was used HFSS program (High Frequency Structural Simulator) that uses the finite element method. With the theory developed computational resources were used to obtain the numerical calculations, using Fortran Power Station, Scilab and Wolfram Mathematica ®. The prototype was built using, as a substrate, the ULTRALAM ® 3850, of Rogers Corporation, and an aluminum plate as a cylindrical structure used to support. The agreement between the measured and simulated results validate the established processes. Conclusions and suggestions are presented for continuing this work

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes the application of computational intelligence techniques to assist complex problems concerning lightning in transformers. In order to estimate the currents related to lightning in a transformer, a neural tool is presented. ATP has generated the training vectors. The input variables used in Artificial Neural Networks (ANN) were the wave front time, the wave tail time, the voltage variation rate and the output variable is the maximum current in the secondary of the transformer. These parameters can define the behavior and severity of lightning. Based on these concepts and from the results obtained, it can be verified that the overvoltages at the secondary of transformer are also affected by the discharge waveform in a similar way to the primary side. By using the tool developed, the high voltage process in the distribution transformers can be mapped and estimated with more precision aiding the transformer project process, minimizing empirics and evaluation errors, and contributing to minimize the failure rate of transformers. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classical Monte Carlo simulations were carried out on the NPT ensemble at 25°C and 1 atm, aiming to investigate the ability of the TIP4P water model [Jorgensen, Chandrasekhar, Madura, Impey and Klein; J. Chem. Phys., 79 (1983) 926] to reproduce the newest structural picture of liquid water. The results were compared with recent neutron diffraction data [Soper; Bruni and Ricci; J. Chem. Phys., 106 (1997) 247]. The influence of the computational conditions on the thermodynamic and structural results obtained with this model was also analyzed. The findings were compared with the original ones from Jorgensen et al [above-cited reference plus Mol. Phys., 56 (1985) 1381]. It is notice that the thermodynamic results are dependent on the boundary conditions used, whereas the usual radial distribution functions g(O/O(r)) and g(O/H(r)) do not depend on them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents an analysis of the wavelet-Galerkin method for one-dimensional elastoplastic-damage problems. Time-stepping algorithm for non-linear dynamics is presented. Numerical treatment of the constitutive models is developed by the use of return-mapping algorithm. For spacial discretization we can use wavelet-Galerkin method instead of standard finite element method. This approach allows to locate singularities. The discrete formulation developed can be applied to the simulation of one-dimensional problems for elastic-plastic-damage models. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The finite volume method is used as a numerical method for solving the fluid flow equations. This method is appropriate to employ under structured and unstructured meshes. Mixed grids, combining both types of grids, are investigated. The coupling of different grids is done by overlapping strategy. The computational effort for the mixed grid is evaluated by the CPU-time, with different percentage of covering area of the unstructured mesh. The present scheme is tested for the driven cavity problem, where the incompressible fluid is integrated by calculating the velocity fields and computing the pressure field in each time step. Several schemes for unstructured grid are examined, and the compatibility condition is applied to check their consistency. A scheme to verify the compatibility condition for the unstructured grids is presented. (c) 2006 IMACS. Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A minimalist representation of protein structures using a Go- like potential for interactions is implemented to investigate the mechanisms of the domain swapping of p13suc1, a protein that exists in two native conformations: a monomer and a domain- swapped dimer formed by the exchange of a beta- strand. Inspired by experimental studies which showed a similarity of the transition states for folding of the monomer and the dimer, in this study we justify this similarity in molecular descriptions. When intermediates are populated in the simulations, formation of a domain- swapped dimer initiates from the ensemble of unfolded monomers, given by the fact that the dimer formation occurs at the folding/ unfolding temperature of the monomer ( T-f). It is also shown that transitions, leading to a dimer, involve the presence of two intermediates, one of them has a dimeric form and the other is monomeric; the latter is much more populated than the former. However, at temperatures lower than T-f, the population of intermediates decreases. It is argued that the two folded forms may coexist in absence of intermediates at a temperature much lower than T-f. Computational simulations enable us to find a mechanism, `` lock- and- dock'', for domain swapping of p13suc1. To explore the route toward dimer formation, the folding of unstructured monomers must be retarded by first locking one of the free ends of each chain. Then, the other free termini could follow and dock at particular regions, where most intrachain contacts are formed, and thus de. ne the transition states of the dimer. The simulations also showed that a decrease in the maximum distance between monomers increased their stability, which is explained based on confinement arguments. Although the simulations are based on models extracted from the native structure of the monomer and the dimer of p13suc1, the mechanism of the domain- swapping process could be general, not only for p13suc1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the ideas behind the package 'isometry', implemented in Maple to calculate isometry groups of dimensions 2, 3 and 4 in General Relativity. The package extends the functionality of previous programs written to perform invariant classification of space-times in General Relativity. Programming solutions used to surmount problems encountered with the calculation of eigenvectors and the determination of the signs of expressions are described. We also show how the package can be used to find the Killing vectors of a space-time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)