969 resultados para Composite Measurement Scales


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neutron logging method has been widely used for field measurement of soil moisture content. This non-destructive method permitted the measurement of in-situ soil moisture content at various depths without the need for burying any sensor. Twenty-three sites located around regional Melbourne have been selected for long term monitoring of soil moisture content using neutron probe. Soil samples collected during the installation are used for site characterisation and neutron probe calibration purposes. A linear relationship is obtained between the corrected neutron probe reading and moisture content for both the individual and combined data from seven sites. It is observed that the liner relationship, developed using combined data, can be used for all sites with an average accuracy of about 80%. Monitoring of the variation of soil moisture content with depth in six months for two sites is presented in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydroxyapatite (HAP) is a major component of bone and has osteoconductive and -inductive properties. It has been successfully applied as a substrate in bone tissue engineering, either with or without a biodegradable polymer such as polycaprolactone or polylactide. Recently, we have developed a stereolithography resin based on poly(D,L-lactide) (PDLLA) and a non-reactive diluent, that allows for the preparation of tissue engineering scaffolds with designed architectures. In this work, designed porous composite structures of PDLLA and HAP are prepared by stereolithography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: Bone loss associated with trauma, osteo-degenerative diseases and tumors has tremendous socioeconomic impact related to personal and occupation disability and health care costs. In the present climate of increasing life expectancy with an ensuing increase in bone-related injuries, orthopaedic surgery is undergoing a paradigm shift from bone-grafting to bone engineering, where a scaffold is implanted to provide adequate load bearing and enhance tissue regeneration. We aim to develop composite scaffolds for bone tissue engineering applications to replace the current gold standard of autografting. ---------- Methods: Medical grade polycaprolactone-tricalcium phosphate (mPCL/TCP) scaffolds (80/20 wt%) were custom made using fused deposition modelling to produce 1x1.5x2 cm sized implants for critical-sized pig cranial implantations, empty defects were used as a control. Autologous bone marrow stromal cells (BMSCs) were extracted and precultured for 2 weeks, dispersed within fibrin glue and injected during scaffold implantation. After 2 years, microcomputed tomography and histology were used to assess bone regenerative capabilities of cell versus cell-free scaffolds. ---------- Results: Extensive bone regeneration was evident throughout the entire scaffold. Clear osteocytes embedded within mineralised matrix and active osteoblasts present around scaffold struts were observed. Cell groups performed better than cell-free scaffolds. ---------- Conclusions: Bone regeneration within defects which cannot heal unassisted can be achieved using mPCL/TCP scaffolds. This is improved by the inclusion of autogenous BMSCs. Further work will include the inclusion of growth factors including BMP-2, VEGF and PDGF to provide multifunctional scaffolds, where the three-dimensional (3D) template itself acts as a biomimetic, programmable and multi-drug delivery device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone loss associated with trauma osteo-degenerative diseases and tumors has tremendous socioeconomic impact related to personal and occupation disability and health care costs. Bone grafting is often critical to surgical therapies. Autogenous bone is presently the preferred grafting material; however, this holds several disadvantages such as donor site morbidity. In the present climate of increasing life expectancy with an ensuing increase in bone-related injuries, orthopaedic surgery is undergoing a paradigm shift from bone-grafting to bone engineering, where a scaffold is implanted to provide adequate load bearing and enhance tissue regeneration. Our group at Queensland University of Technology (QUT) have developed, characterised and tested polycaprolactone/ tricalcium phosphate (PCL/TCP) composite scaffolds for low load-bearing bone defects. These scaffolds are being further developed for application in higher load bearing sites. Our approach emphasizes the importance of the biomaterials’ structural design, the scaffold architecture and structural and nutritional requirements for cell culture. These first-generation scaffolds made from medical grade PCL (mPCL) have been studied for more than 5 years within a clinical setting 1. This paper describes the application of second-generation scaffolds in small and large animal bone defect models and the ensuing bone regeneration as shown by histology and µCT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Training designed to support and strengthen higher-order mental abilities now often involves immersion in Virtual Reality where dangerous real world scenarios can be safely replicated. However despite the growing popularity of advanced training simulations, methods for evaluating their use rely heavily on subjective measures or analysis of final outcomes. Without dynamic, objective performance measures the outcome of training in terms of impact on cognitive skills and ability to transfer newly acquired skills to the real world is unknown. The relationship between affective intensity and cognitive learning provides a potential new approach to ensure the processing of cognitions which occur prior to final outcomes, such as problem-solving and decision-making, are adequately evaluated. This paper describes the technical aspects of pilot work recently undertaken to develop a new measurement tool designed to objectively track individual affect levels during simulation-based training.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Empowerment is a complex process of psychological, social, organizational and structural change. It allows individuals and groups to achieve positive growth and effectively address the social and psychological impacts of historical oppression, marginalization and disadvantage. The Growth and Empowerment Measure (GEM) was developed to measure change in dimensions of empowerment as defi ned and described by Aboriginal Australians who participated in the Family Well Being programme.---------- Method: The GEM has two components: a 14-item Emotional Empowerment Scale (EES14) and 12 Scenarios (12S). It is accompanied by the Kessler 6 Psychological Distress Scale (K6), supplemented by two questions assessing frequency of happy and angry feelings. For validation, the measure was applied with 184 Indigenous Australian participants involved in personal and/or organizational social health activities.---------- Results: Psychometric analyses of the new instruments support their validity and reliability and indicate two-component structures for both the EES (Self-capacity; Inner peace) and the 12S (Healing and enabling growth, Connection and purpose). Strong correlations were observed across the scales and subscales. Participants who scored higher on the newly developed scales showed lower distress on the K6, particularly when the two additional questions were included. However, exploratory factor analyses demonstrated that GEM subscales are separable from the Kessler distress measure.---------- Conclusion: The GEM shows promise in enabling measurement and enhancing understanding of both process and outcome of psychological and social empowerment within an Australian Indigenous context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Process modeling is an emergent area of Information Systems research that is characterized through an abundance of conceptual work with little empirical research. To fill this gap, this paper reports on the development and validation of an instrument to measure user acceptance of process modeling grammars. We advance an extended model for a multi-stage measurement instrument development procedure, which incorporates feedback from both expert and user panels. We identify two main contributions: First, we provide a validated measurement instrument for the study of user acceptance of process modeling grammars, which can be used to assist in further empirical studies that investigate phenomena associated with the business process modeling domain. Second, in doing so, we describe in detail a procedural model for developing measurement instruments that ensures high levels of reliability and validity, which may assist fellow scholars in executing their empirical research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In cloud computing resource allocation and scheduling of multiple composite web services is an important challenge. This is especially so in a hybrid cloud where there may be some free resources available from private clouds but some fee-paying resources from public clouds. Meeting this challenge involves two classical computational problems. One is assigning resources to each of the tasks in the composite web service. The other is scheduling the allocated resources when each resource may be used by more than one task and may be needed at different points of time. In addition, we must consider Quality-of-Service issues, such as execution time and running costs. Existing approaches to resource allocation and scheduling in public clouds and grid computing are not applicable to this new problem. This paper presents a random-key genetic algorithm that solves new resource allocation and scheduling problem. Experimental results demonstrate the effectiveness and scalability of the algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 27-item Intolerance of Uncertainty Scale (IUS) has become one of the most frequently used measure of Intolerance of Uncertainty. More recently, an abridged, 12-item version of the IUS has been developed. The current research used clinical (n = 50) and non-clinical (n = 56) samples to examine and compare the psychometric properties of both versions of the IUS. The two scales showed good internal consistency at both the total and subscale level and had satisfactory test-retest reliability. Both versions were correlated with worry and trait anxiety and had satisfactory concurrent validity. Significant differences between the scores of the clinical and non-clinical sample supported discriminant validity. Predictive validity was also supported for the two scales. Total scores, in the case of the clinical sample, and a subscale, in the case of the non-clinical sample, significantly predicted pathological worry and trait anxiety. Overall, the clinicians and researchers can use either version of the IUS with confidence, due to their sound psychometric properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: In response to the need for more comprehensive quality assessment within Australian residential aged care facilities, the Clinical Care Indicator (CCI) Tool was developed to collect outcome data as a means of making inferences about quality. A national trial of its effectiveness and a Brisbane-based trial of its use within the quality improvement context determined the CCI Tool represented a potentially valuable addition to the Australian aged care system. This document describes the next phase in the CCI Tool.s development; the aims of which were to establish validity and reliability of the CCI Tool, and to develop quality indicator thresholds (benchmarks) for use in Australia. The CCI Tool is now known as the ResCareQA (Residential Care Quality Assessment). Methods: The study aims were achieved through a combination of quantitative data analysis, and expert panel consultations using modified Delphi process. The expert panel consisted of experienced aged care clinicians, managers, and academics; they were initially consulted to determine face and content validity of the ResCareQA, and later to develop thresholds of quality. To analyse its psychometric properties, ResCareQA forms were completed for all residents (N=498) of nine aged care facilities throughout Queensland. Kappa statistics were used to assess inter-rater and test-retest reliability, and Cronbach.s alpha coefficient calculated to determine internal consistency. For concurrent validity, equivalent items on the ResCareQA and the Resident Classification Scales (RCS) were compared using Spearman.s rank order correlations, while discriminative validity was assessed using known-groups technique, comparing ResCareQA results between groups with differing care needs, as well as between male and female residents. Rank-ordered facility results for each clinical care indicator (CCI) were circulated to the panel; upper and lower thresholds for each CCI were nominated by panel members and refined through a Delphi process. These thresholds indicate excellent care at one extreme and questionable care at the other. Results: Minor modifications were made to the assessment, and it was renamed the ResCareQA. Agreement on its content was reached after two Delphi rounds; the final version contains 24 questions across four domains, enabling generation of 36 CCIs. Both test-retest and inter-rater reliability were sound with median kappa values of 0.74 (test-retest) and 0.91 (inter-rater); internal consistency was not as strong, with a Chronbach.s alpha of 0.46. Because the ResCareQA does not provide a single combined score, comparisons for concurrent validity were made with the RCS on an item by item basis, with most resultant correlations being quite low. Discriminative validity analyses, however, revealed highly significant differences in total number of CCIs between high care and low care groups (t199=10.77, p=0.000), while the differences between male and female residents were not significant (t414=0.56, p=0.58). Clinical outcomes varied both within and between facilities; agreed upper and lower thresholds were finalised after three Delphi rounds. Conclusions: The ResCareQA provides a comprehensive, easily administered means of monitoring quality in residential aged care facilities that can be reliably used on multiple occasions. The relatively modest internal consistency score was likely due to the multi-factorial nature of quality, and the absence of an aggregate result for the assessment. Measurement of concurrent validity proved difficult in the absence of a gold standard, but the sound discriminative validity results suggest that the ResCareQA has acceptable validity and could be confidently used as an indication of care quality within Australian residential aged care facilities. The thresholds, while preliminary due to small sample size, enable users to make judgements about quality within and between facilities. Thus it is recommended the ResCareQA be adopted for wider use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The process of offsetting land against unavoidable disturbance of development sites in Queensland will benefit from a method that allows the best possible selection to be made of alternative lands. With site selection now advocated through a combination of Regional Ecosystem and Land Capability classifications state-wide, a case study has determined methods of assessing the functional lift – that is, measures of net environmental gain – of such action. Outcomes with potentially high functional lift are determined, that offer promise not only for endangered ecosystems but also for managing adjacent conservation reserves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies interfacial debonding behavior of composite beams which include piezoelectric materials, adhesive and host beam. The focus is put on crack initiation and growth of the piezoelectric adhesive interface. Closed-form solutions of interface stresses and energy release rates are obtained for adhesive layer in the piezoelectric composite beams. Finite element analyses have been carried out to study the initiation and growth of interfaces crack for piezoelectric beams with interface element by ANSYS, in which the interface element of FE model is based on the cohesive zone models to characterize the fracture behavior of the interfacial debonding. The results have been compared with analystical solution, and the influence of different geometry and material parameters on the interfacial behavior of piezoelectric composite beams have been discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the past 20 years, mesoporous materials have been attracted great attention due to their significant feature of large surface area, ordered mesoporous structure, tunable pore size and volume, and well-defined surface property. They have many potential applications, such as catalysis, adsorption/separation, biomedicine, etc. [1]. Recently, the studies of the applications of mesoporous materials have been expanded into the field of biomaterials science. A new class of bioactive glass, referred to as mesoporous bioactive glass (MBG), was first developed in 2004. This material has a highly ordered mesopore channel structure with a pore size ranging from 5–20 nm [1]. Compared to non-mesopore bioactive glass (BG), MBG possesses a more optimal surface area, pore volume and improved in vitro apatite mineralization in simulated body fluids [1,2]. Vallet-Regí et al. has systematically investigated the in vitro apatite formation of different types of mesoporous materials, and they demonstrated that an apatite-like layer can be formed on the surfaces of Mobil Composition of Matters (MCM)-48, hexagonal mesoporous silica (SBA-15), phosphorous-doped MCM-41, bioglass-containing MCM-41 and ordered mesoporous MBG, allowing their use in biomedical engineering for tissue regeneration [2-4]. Chang et al. has found that MBG particles can be used for a bioactive drug-delivery system [5,6]. Our study has shown that MBG powders, when incorporated into a poly (lactide-co-glycolide) (PLGA) film, significantly enhance the apatite-mineralization ability and cell response of PLGA films. compared to BG [7]. These studies suggest that MBG is a very promising bioactive material with respect to bone regeneration. It is known that for bone defect repair, tissue engineering represents an optional method by creating three-dimensional (3D) porous scaffolds which will have more advantages than powders or granules as 3D scaffolds will provide an interconnected macroporous network to allow cell migration, nutrient delivery, bone ingrowth, and eventually vascularization [8]. For this reason, we try to apply MBG for bone tissue engineering by developing MBG scaffolds. However, one of the main disadvantages of MBG scaffolds is their low mechanical strength and high brittleness; the other issue is that they have very quick degradation, which leads to an unstable surface for bone cell growth limiting their applications. Silk fibroin, as a new family of native biomaterials, has been widely studied for bone and cartilage repair applications in the form of pure silk or its composite scaffolds [9-14]. Compared to traditional synthetic polymer materials, such as PLGA and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), the chief advantage of silk fibroin is its water-soluble nature, which eliminates the need for organic solvents, that tend to be highly cytotoxic in the process of scaffold preparation [15]. Other advantages of silk scaffolds are their excellent mechanical properties, controllable biodegradability and cytocompatibility [15-17]. However, for the purposes of bone tissue engineering, the osteoconductivity of pure silk scaffolds is suboptimal. It is expected that combining MBG with silk to produce MBG/silk composite scaffolds would greatly improve their physiochemical and osteogenic properties for bone tissue engineering application. Therefore, in this chapter, we will introduce the research development of MBG/silk scaffolds for bone tissue engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a new approach is proposed for interpreting of regional frequencies in multi machine power systems. The method uses generator aggregation and system reduction based on coherent generators in each area. The reduced system structure is able to be identified and a kalman estimator is designed for the reduced system to estimate the inter-area modes using the synchronized phasor measurement data. The proposed method is tested on a six machine, three area test system and the obtained results show the estimation of inter-area oscillations in the system with a high accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smart matrices are required in bone tissueengineered grafts that provide an optimal environment for cells and retain osteo-inductive factors for sustained biological activity. We hypothesized that a slow-degrading heparin-incorporated hyaluronan (HA) hydrogel can preserve BMP-2; while an arterio–venous (A–V) loop can support axial vascularization to provide nutrition for a bioartificial bone graft. HA was evaluated for osteoblast growth and BMP-2 release. Porous PLDLLA–TCP–PCL scaffolds were produced by rapid prototyping technology and applied in vivo along with HA-hydrogel, loaded with either primary osteoblasts or BMP-2. A microsurgically created A–V loop was placed around the scaffold, encased in an isolation chamber in Lewis rats. HA-hydrogel supported growth of osteoblasts over 8 weeks and allowed sustained release of BMP-2 over 35 days. The A–V loop provided an angiogenic stimulus with the formation of vascularized tissue in the scaffolds. Bone-specific genes were detected by real time RT-PCR after 8 weeks. However, no significant amount of bone was observed histologically. The heterotopic isolation chamber in combination with absent biomechanical stimulation might explain the insufficient bone formation despite adequate expression of bone-related genes. Optimization of the interplay of osteogenic cells and osteo-inductive factors might eventually generate sufficient amounts of axially vascularized bone grafts for reconstructive surgery.