867 resultados para Coated fertilizer
Resumo:
A gold nanoparticle-coated screen-printed carbon electrode was used as the transducer in the development of an electrochemical immunosensor for Ara h 1 (a major peanut allergen) detection in food samples. Gold nanoparticles (average diameter=32 nm) were electrochemically generated on the surface of screen-printed carbon electrodes. Two monoclonal antibodies were used in a sandwich-type immunoassay and the antibody–antigen interaction was electrochemically detected through stripping analysis of enzymatically (using alkaline phosphatase) deposited silver. The total time of the optimized immunoassay was 3 h 50 min. The developed immunosensor allowed the quantification of Ara h 1 between 12.6 and 2000 ng/ml, with a limit of detection of 3.8 ng/ml, and provided precise (RSD <8.7%) and accurate (recovery >96.6%) results. The immunosensor was successfully applied to the analysis of complex food matrices (cookies and chocolate), being able to detect Ara h 1 in samples containing 0.1% of peanut.
Resumo:
In the present work, Indigenous polymer coated Tin Free Steel cans were analyzed fortheir suitability for thermal processing and storage of fish and fish products following standard methods. The raw materials used for the development of ready to eat thermally processed fish products were found to be of fresh condition. The values for various biochemical and microbiological parameters of the raw materials were well within the limits. Based on the analysis of commercial sterility, instrumental colour, texture, WB-shear force and sensory parameters, squid masala processed to F0 value of 8 min with a total process time of 38.5 min and cook value of 92 min was chosen as the optimum for squid masala in tin free steel cans while shrimp curry processed to F0 7 min with total process time of 44.0 min and cook value of 91.1 min was found to be ideal and was selected for storage study. Squid masala and shrimp curry thermally processed in indigenous polymer coated TFS cans were found to be acceptable even after one year of storage at room temperaturebased on the analysis of various sensory and biochemical parameters. Analysis of the Commission Internationale d’ Eclirage L*, a* and b* color values showed that the duration of exposure to heat treatment influenced the color parameters: the lightness (L*) and yellowness (b*)decreased, and the redness (a*) significantly increased with the increase in processing time or reduction in processing temperature.Instrumental analysis of texture showed that hardness-1 & 2 decreased with reduction in retort temperature while cohesiveness value did not show any appreciable change with decrease in temperature of processing. Other texture profile parameters like gumminess, springiness and chewiness decreased significantly with increase of processing time. W-B shear force values of mackerel meat processed at 130 °C were significantly higher than those processed at 121.1 and 115 °C. HTST processing of mackerel in brine helped in reducing the process time and improving the quality.The study also indicated that indigenous polymer coated TFS cans with easy openends can be a viable alternative to the conventional tin and aluminium cans. The industry can utilize these cans for processing ready to eat fish and shell fish products for both domestic and export markets. This will help in reviving the canning industry in India.
Resumo:
Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology
Resumo:
Brasses are widely used as constructional materials in marine environment due to their anticorrosive,antifouling and mechanical properties.However, its resistance to corrosion and fouling may vary according to local marine environmental condition and the seasons.The dezincification of brass is one of the forms of selective corrosion which has attracted the attention of researchers for the last two decades.Many of the dezincification mechanistic studies have been performed in noncomplex media and hence their conclusions cannot be extended to esturine water,which is of great significance since brass is extensively used in marine environment.Inhibited α brasses are largely immune to dezincication and the effect of tin and arsenic addition to α/beta brasses is not so reliable in controlling the dezincification. There have been many cases of dezincification in duplex brasses in both freshwater and seawater.Though there is some protection methods such as inhibitors,electro deposition and electro polymerization,there is no reliable method of inhibiting the dezincification of two-phase brass.Organic coatings are effectively used for the protection metals due to their capacity to act a physical barrieer between the metal surface and corrosive environment.Hence,pure epoxy coating is selected for this as it has antocorrosiion effect on brass.The dezincification behaviour of brass of the present study has been highlighted in terms of corrosion rate,weight gain/loss,corrosion current and polarization resistence,open circuit potential,dezincification factor. The marine fouling as biomass on brass was assessed and presented in this thesis, The physicochemical properties of estuarine water were correlated with corrosion behaviour of brass.The deterioration of the brass subjected to the effect of estuarine water was also investigated as a measure of loss in mechanical properties such as tensile strength,yield strength,percntage elongation and percentage reduction in area.To validate dezincification data,visual observation,spot analysis,surface morphology before and after removal of corrosion products and corrosion product analysis were performed.The dezincification behavior of epoxy coated brass of the present study has beenhighlighted in terms of corrosion rate ,weight gain/loss,corrosion current and polarization resistance,open circuit potential.dezincification factor.The marine fouling as biomass on epoxy coated brass subjeted to the effect of estuarine water was also investigated as ameasure of loss in mechanical properties such as tensile strength,percentage elongation and percentage reduction in area.The results of dezincification behavior of brass and epoxy coated brass in Cochin estuary water has been presented and discussed.Attempt has been made to correlate the dezincification behavior of brass with epoxy coated brass.
Resumo:
The present work derives motivation from the so called surface/interfacial magnetism in core shell structures and commercial samples of Fe3O4 and c Fe2O3 with sizes ranging from 20 to 30 nm were coated with polyaniline using plasma polymerization and studied. The High Resolution Transmission Electron Microscopy images indicate a core shell structure after polyaniline coating and exhibited an increase in saturation magnetization by 2 emu/g. For confirmation, plasma polymerization was performed on maghemite nanoparticles which also exhibited an increase in saturation magnetization. This enhanced magnetization is rather surprising and the reason is found to be an interfacial phenomenon resulting from a contact potential.
Resumo:
Inhibited α brasses are largely immune to dezincification in most water, but the effect of tin and arsenic addition to α/β brasses is not so reliable or predictable in controlling the problem. There have been many cases of dezincification in duplex brasses in both fresh water and seawater. There is no reliable method of inhibiting the dezincification of two-phase brass despite there are some protection methods such as inhibitors, electro deposition and electro polymerization. Organic coatings are effectively used for the protection of metals due to their capacity to act as a physical barrier between the metal surface and corrosive environment. Hence, epoxy coating on brass was applied and effect of this against dezincification in Cochin estuarine water over a period of one year was studied and reported in this paper
Resumo:
Type and rate of fertilizers influence the level of soil organic carbon (Corg) and total nitrogen (Nt) markedly, but the effect on C and N partitioning into different pools is open to question. The objectives of the present work were to: (i) quantify the impact of fertilizer type and rate on labile, intermediate and passive C and N pools by using a combination of biological, chemical and mathematical methods; (ii) explain previously reported differences in the soil organic matter (SOM) levels between soils receiving farmyard manure with or without biodynamic preparations by using Corg time series and information on SOM partitioning; and (iii) quantify the long-term and short-term dynamics of SOM in density fractions and microbial biomass as affected by fertilizer type and rate and determine the incorporation of crop residues into labile SOM fractions. Samples were taken from a sandy Cambisol from the long-term fertilization trial in Darmstadt, Germany, founded in 1980. The nine treatments (four field replicates) were: straw incorporation plus application of mineral fertilizer (MSI) and application of rotted farmyard manure with (DYN) or without (FYM) addition of biodynamic preparations, each at high (140 – 150 kg N ha-1 year-1; MSIH, DYNH, FYMH), medium (100 kg N ha-1 year-1; MSIM, DYNM, FYMM) and low (50 – 60 kg N ha-1 year-1; MSIL, DYNL, FYML) rates. The main findings were: (i) The stocks of Corg (t ha-1) were affected by fertilizer type and rate and increased in the order MSIL (23.6), MSIM (23.7), MSIH (24.2) < FYML (25.3) < FYMM (28.1), FYMH (28.1). Stocks of Nt were affected in the same way (C/N ratio: 11). Storage of C and N in the modelled labile pools (turnover times: 462 and 153 days for C and N, respectively) were not influenced by the type of fertilizer (FYM and MSI) but depended significantly (p ≤ 0.05) on the application rate and ranged from 1.8 to 3.2 t C ha 1 (7 – 13% of Corg) and from 90 to 140 kg N ha-1 (4-5% of Nt). In the calculated intermediate pool (C/N ratio 7), stocks of C were markedly higher in FYM treatments (15-18 t ha-1) compared to MSI treatments (12-14 t ha-1). This showed that differences in SOM stocks in the sandy Cambisol induced by fertilizer rate may be short-lived in case of changing management, but differences induced by fertilizer type may persist for decades. (ii) Crop yields, estimated C inputs (1.5 t ha-1 year-1) with crop residue, microbial bio¬mass C (Cmic, 118 – 150 mg kg-1), microbial biomass N (17 – 20 mg kg-1) and labile C and N pools did not differ significantly between FYM and DYN treatments. However, labile C increased linearly with application rate (R2 = 0.53) from 7 to 11% of Corg. This also applied for labile N (3.5 to 4.9% of Nt). The higher contents of Corg in DYN treatments existed since 1982, when the first sampling was conducted for all individual treatments. Contents of Corg between DYN and FYM treatments con-verged slightly since then. Furthermore, at least 30% of the difference in Corg was located in the passive pool where a treatment effect could be excluded. Therefore, the reported differences in Corg contents existed most likely since the beginning of the experiment and, as a single factor of biodynamic agriculture, application of bio-dynamic preparations had no effect on SOM stocks. (iii) Stocks of SOM, light fraction organic C (LFOC, ρ ≤ 2.0 g cm-3), light fraction organic N and Cmic decreased in the order FYMH > FYML > MSIH, MSIL for all sampling dates in 2008 (March, May, September, December). However, statistical significance of treatment effects differed between the dates, probably due to dif-ferences in the spatial variation throughout the year. The high proportion of LFOC on total Corg stocks (45 – 55%) highlighted the importance of selective preservation of OM as a stabilization mechanism in this sandy Cambisol. The apparent turnover time of LFOC was between 21 and 32 years, which agreed very well with studies with substantially longer vegetation change compared to our study. Overall, both approaches; (I) the combination of incubation, chemical fractionation and simple modelling and (II) the density fractionation; provided complementary information on the partitioning of SOM into pools of different stability. The density fractionation showed that differences in Corg stocks between FYM and MSI treatments were mainly located in the light fraction, i.e. induced by higher recalcitrance of the organic input in the FYM treatments. Moreover, the use of the combination of biological, chemical and mathematical methods indicated that effects of fertilizer rate on total Corg and Nt stocks may be short-lived, but that the effect of fertilizer type may persist for longer time spans in the sandy Cambisol.
Resumo:
The GEFSOC Project developed a system for estimating soil carbon (C) stocks and changes at the national and sub-national scale. As part of the development of the system, the Century ecosystem model was evaluated for its ability to simulate soil organic C (SOC) changes in environmental conditions in the Indo-Gangetic Plains, India (IGP). Two long-term fertilizer trials (LTFT), with all necessary parameters needed to run Century, were used for this purpose: a jute (Corchorus capsularis L.), rice (Oryza sativa L.) and wheat (Triticum aestivum L.) trial at Barrackpore, West Bengal, and a rice-wheat trial at Ludhiana, Punjab. The trials represent two contrasting climates of the IGP, viz. semi-arid, dry with mean annual rainfall (MAR) of < 800 mm and humid with > 1600 turn. Both trials involved several different treatments with different organic and inorganic fertilizer inputs. In general, the model tended to overestimate treatment effects by approximately 15%. At the semi-arid site, modelled data simulated actual data reasonably well for all treatments, with the control and chemical N + farm yard manure showing the best agreement (RMSE = 7). At the humid site, Century performed less well. This could have been due to a range of factors including site history. During the study, Century was calibrated to simulate crop yields for the two sites considered using data from across the Indian IGP. However, further adjustments may improve model performance at these sites and others in the IGP. The availability of more longterm experimental data sets (especially those involving flooded lowland rice and triple cropping systems from the IGP) for testing and validation is critical to the application of the model's predictive capabilities for this area of the Indian sub-continent. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Long-term indicators of soil fertility were assessed by measuring grain yield, soil organic carbon (SOC) and soil Olsen phosphorous for a P-deficient soil. In one set of treatments, goat manure was applied annually for 13 years at 0, 5 and 10 t ha(-1), and intercrops of sorghum/cowpea, millet/green gram and maize/pigeonpea were grown. Yield depended on rainfall and trends with time were not identifiable. Manure caused an upward trend in SOC, but 10 t ha(-1) manure did not give significantly more SOC than 5 t ha(-1). Only 10 t ha(-1) manure increased Olsen P. Measurements of both SOC and Olsen P are recommended. In another set of treatments, manure was applied for four years; the residual effect lasted another seven to eight years when assessed by yield, SOC and Olsen P Treatment with mineral fertilizers provided the same rates of N and P as 5 t hat manure and yields from manure and fertilizer were similar. Fertilizer increased Olsen P but not SOC. Management systems with occasional manure application and intermediate fertilizer applications should be assessed. Inputs and offtakes of C, N and P were measured for three years. Approximately 16, 25 and 11% of C, N and P respectively were stabilized into soil organic matter from 5 t ha(-1) a(-1) manure. The majority of organic P was fixed as soil inorganic P.
Resumo:
The aim of this study was to examine the mechanisms by which gypsum increases the sorption of fertilizer-P in soils of and and semi-arid regions. Either gypsum or soil (Usher from the UK; pH 7.8, 7% organic matter, 21% CaCO3: Yasouj from Iran; pH 8.2, 1.4% OM, 18% CaCO3: Ghanimeh from Saudi Arabia; pH 7.8, 1% OM, 26% CaCO3, 13% gypsum) was shaken for 24 It with KH2PO4 solutions in 10 mM CaCl2. With gypsum, grinding increased sorption by a factor of about 3, and increase in pH from 5.6 to 7.5 greatly increased sorption. Scanning electron micrographs (SEM) and EDX quantitative analysis showed that small crystals of gypsum disappeared and roughly spherical particles of dicalcium phosphate (DCPD) were formed. Analysis of equilibrium Solutions showed, using GEOCHEM, that octa-calcium phosphate (OCP) coated the DCPD. For the soils, sorption was in the order Ghanimeh > Yasouj > Usher. Removal of gypsum from Ghanimeh reduced sorption, with precipitated gypsum having a greater effect than gypsum mixed physically with the soil. Addition to Usher had no effect. SEM and EDX could not be used in the soil matrix, but solubility analysis again showed that solutions were close to equilibrium with OCP. Usher was unresponsive to added gypsum, presumably because of its small sorption capacity and high organic matter content. In Ghanimeh and Yasouj soils, gypsum increased sorption by being a source of readily available Ca2+ (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The effects of irrigation and nitrogen (N) fertilizer on Hagberg falling number (HFN), specific weight (SW) and blackpoint (BP) of winter wheat (Triticum aestivum L) were investigated. Mains water (+50 and +100 mm month(-1), containing 44 mg NO3- litre(-1) and 28 mg SO42- litre(-1)) was applied with trickle irrigation during winter (17 January-17 March), spring (21 March-20 May) or summer (24 May-23 July). In 1999/2000 these treatments were factorially combined with three N levels (0, 200, 400 kg N ha(-1)), applied to cv Hereward. In 2000/01 the 400 kg N ha(-1) treatment was replaced with cv Malacca given 200 kg N ha(-1). Irrigation increased grain yield, mostly by increasing grain numbers when applied in winter and spring, and by increasing mean grain weight when applied in summer. Nitrogen increased grain numbers and SW, and reduced BP in both years. Nitrogen increased HFN in 1999/2000 and reduced HFN in 2000/01. Effects of irrigation on HFN, SW and BP were smaller and inconsistent over year and nitrogen level. Irrigation interacted with N on mean grain weight: negatively for winter and spring irrigation, and positively for summer irrigation. Ten variables derived from digital image analysis of harvested grain were included with mean grain weight in a principal components analysis. The first principal component ('size') was negatively related to HFN (in two years) and BP (one year), and positively related to SW (two years). Treatment effects on dimensions of harvested grain could not explain all of the effects on HFN, BP and SW but the results were consistent with the hypothesis that water and nutrient availability, even when they were affected early in the season, could influence final grain quality if they influenced grain numbers and size. (C) 2004 Society of Chemical Industry
Resumo:
Field experiments were carried out to assess the effects of nitrogen fertilization and seed rate on the Hagberg falling number (HFN) of commercial wheat hybrids and their parents. Applying nitrogen (200 kg N ha(-1)) increased HFN in two successive years. The HFN of the hybrid Hyno Esta was lower than either of its parents (Estica and Audace), particularly when nitrogen was not applied. Treatment effects on HFN were negatively associated with a-amylase activity. Phadebas grain blotting suggested two populations of grains with different types of a-amylase activity: Estica appeared to have a high proportion of grains with low levels of late maturity endosperm a-amylase activity (LMEA); Audace had a few grains showing high levels of germination amylase; and the hybrid, Hyno Esta, combined the sources from both parents to show heterosis for a-amylase activity. Applying nitrogen reduced both apparent LMEA and germination amylase. The effects on LMEA were associated with the size and disruption of the grain cavity, which was greater in Hyno Esta and Estica and in zero-nitrogen treatments. External grain morphology failed to explain much of the variation in LMEA and cavity size, but there was a close negative correlation between cavity size and protein content. Applying nitrogen increased post-harvest dormancy of the grain. Dormancy was greatest in Estica and least in Audace. It is proposed that effects of seed rate, genotype and nitrogen fertilizer on HFN are mediated through factors affecting the size and disruption of the grain cavity and therefore LMEA, and through factors affecting dormancy and therefore germination amylase. (c) 2004 Society of Chemical Industry.