959 resultados para Co-infection


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PROBLEM Chlamydia trachomatis is a significant worldwide health problem, and the often-asymptomatic disease can result in infertility. To develop a successful vaccine, a complete understanding of the immune response to chlamydial infection and development of genital tract pathology is required. METHOD OF STUDY We utilized the murine genital model of chlamydial infection. Mice were immunized with chlamydial major outer membrane protein, and vaginal lavage was assessed for the presence of neutralizing antibodies. These samples were then pre-incubated with Chlamydia muridarum and administered to the vaginal vaults of immune-competent female BALB/c mice to determine the effect on infection. RESULTS The administration of C. muridarum in conjunction with neutralizing antibodies reduced the numbers of mice infected, but a surprising finding was that this accelerated the development of severe oviduct pathology. CONCLUSION Antibodies play an under-recognized role in chlamydial infection and pathology development, which possibly involves interaction with Th1 immunity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectra of two well-defined types of koritnigite crystals from the Jáchymov ore district, Czech Republic, were recorded and interpreted. No substantial differences were observed between both crystal types. Observed Raman bands were attributed to the (AsO3OH)2- stretching and bending vibrations, stretching and bending vibrations of water molecules and hydroxyl ions. Non-interpreted Raman spectra of koritnigite from the RRUFF database, and published infrared spectra of cobaltkoritnigite were used for comparison. The O-H...O hydrogen bond lengths in the crystal structure of koritnigite were inferred from the Raman spectra and compared with those derived from the X-ray single crystal refinement. The presence of (AsO3OH)2- units in the crystal structure of koritnigite was proved from the Raman spectra which supports the conclusions of the X-ray structure analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Erythromycin is the standard antibiotic used for treatment of Ureaplasma species during 3 pregnancy; however, maternally administered erythromycin may be ineffective at eliminating 4 intra-amniotic ureaplasma infections. We asked if erythromycin would eradicate intra-amniotic 5 ureaplasma infections in pregnant sheep. At 50 days of gestation (d, term=150d) pregnant ewes 6 received intra-amniotic injections of erythromycin-sensitive U. parvum serovar 3 (n=16) or 10B 7 medium (n=16). At 100d, amniocentesis was performed; five fetal losses (ureaplasma group: 8 n=4; 10B group: n=1) had occurred by this time. Remaining ewes were allocated into treatment 9 subgroups: medium only (M, n=7); medium and erythromycin (M/E, n=8); ureaplasma only (Up, 10 n=6) or ureaplasma and erythromycin (Up/E, n=6). Erythromycin was administered intra11 muscularly (500 mg), eight-hourly for four days (100d-104d). Amniotic fluid samples were 12 collected at 105d. At 125d preterm fetuses were surgically delivered and specimens were 13 collected for culture and histology. Erythromycin was quantified in amniotic fluid by liquid 14 chromatography-mass spectrometry. Ureaplasmas were isolated from the amniotic fluid, 15 chorioamnion and fetal lung of animals from the Up and Up/E groups, however, the numbers of 16 U. parvum recovered were not different between these groups. Inflammation in the 17 chorioamnion, cord and fetal lung was increased in ureaplasma-exposed animals compared to 18 controls, but was not different between the Up and Up/E groups. Erythromycin was detected in 19 amniotic fluid samples, although concentrations were low (<10-76 ng/mL). This study 20 demonstrates that maternally administered erythromycin does not eradicate chronic, intra- amniotic ureaplasma infections or improve fetal outcomes in an ovine model, potentially due to 22 the poor placental passage of erythromycin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NF-Y is a heterotrimeric transcription factor complex. Each of the NF-Y subunits (NF-YA, NF-YB and NF-YC) in plants is encoded by multiple genes. Quantitative RT-PCR analysis revealed that five wheat NF-YC members (TaNF-YC5, 8, 9, 11 & 12) were upregulated by light in both the leaf and seedling shoot. Co-expression analysis of Affymetrix wheat genome array datasets revealed that transcript levels of a large number of genes were consistently correlated with those of the TaNF-YC11 and TaNF-YC8 genes in 3-4 separate Affymetrix array datasets. TaNF-YC11-correlated transcripts were significantly enriched with the Gene Ontology term photosynthesis. Sequence analysis in the promoters of TaNF-YC11-correlated genes revealed the presence of putative NF-Y complex binding sites (CCAAT motifs). Quantitative RT-PCR analysis of a subset of potential TaNF-YC11 target genes showed that ten out of the thirteen genes were also light-upregulated in both the leaf and seedling shoot and had significantly correlated expression profiles with TaNF-YC11. The potential target genes for TaNF-YC11 include subunit members from all four thylakoid membrane bound complexes required for the conversion of solar energy into chemical energy and rate limiting enzymes in the Calvin cycle. These data indicate that TaNF-YC11 is potentially involved in regulation of photosynthesis-related genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(lactide-co-glycolide) (PLGA) beads have been widely studied as a potential drug/protein carrier. The main shortcomings of PLGA beads are that they lack bioactivity and controllable drug-delivery ability, and their acidic degradation by-products can lead to pH decrease in the vicinity of the implants. Akermanite (AK) (Ca(2) MgSi(2) O(7) ) is a novel bioactive ceramic which has shown excellent bioactivity and degradation in vivo. This study aimed to incorporate AK to PLGA beads to improve the physiochemical, drug-delivery, and biological properties of PLGA beads. The microstructure of beads was characterized by SEM. The effect of AK incorporating into PLGA beads on the mechanical strength, apatite-formation ability, the loading and release of BSA, and the proliferation, and differentiation of bone marrow stromal cells (BMSCs) was investigated. The results showed that the incorporation of AK into PLGA beads altered the anisotropic microporous structure into homogenous one and improved their compressive strength and apatite-formation ability in simulated body fluids (SBF). AK neutralized the acidic products from PLGA beads, leading to stable pH value of 7.4 in biological environment. AK led to a sustainable and controllable release of bovine serum albumin (BSA) in PLGA beads. The incorporation of AK into PLGA beads enhanced the proliferation and alkaline phosphatase activity of BMSCs. This study implies that the incorporation of AK into PLGA beads is a promising method to enhance their physiochemical and biological property. AK/PLGA composite beads are a potential bioactive drug-delivery system for bone tissue repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly (lactide-co-glycolide) (PLGA) microspheres have been used for regenerative medicine due to their ability for drug delivery and generally good biocompatibility, but they lack adequate bioactivity for bone repair application. CaSiO3 (CS) has been proposed as a new class of material suitable for bone tissue repair due to its excellent bioactivity. In this study, we set out to incorporate CS into PLGA microspheres to investigate how the phase structure (amorphous and crystal) of CS influences the in vitro and in vivo bioactivity of the composite microspheres, with a view to the application for bone regeneration. X-ray diffraction (XRD), N2 adsorption-desorption analysis and scanning electron microscopy (SEM) were used to analyze the phase structure, surface area/pore volume, and microstructure of amorphous CS (aCS) and crystal CS (cCS), as well as their composite microspheres. The in vitro bioactivity of aCS and cCS – PLGA microspheres was evaluated by investigating their apatite-mineralization ability in simulated body fluids (SBF) and the viability of human bone mesenchymal stem cells (BMSCs). The in vivo bioactivity was investigated by measuring their de novo bone-formation ability. The results showed that the incorporation of both aCS and cCS enhanced the in vitro and in vivo bioactivity of PLGA microspheres. cCS/PLGA microspheres improved better in vitro BMSC viability and de novo bone-formation ability in vivo, compared to aCS/PLGA microspheres. Our study indicates that controlling the phase structure of CS is a promising method to modulate the bioactivity of polymer microsphere system for potential bone tissue regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since 2007 Kite Arts Education Program (KITE), based at Queensland Performing Arts Centre (QPAC), has been engaged in delivering a series of theatre-based experiences for children in low socio-economic primary schools in Queensland. The twelve-week workshop experience culminates in a performance developed by the children with the assistance of the teacher artists from KITE for their community and parents/carers in a peak community cultural institution. Using Wartella’s notion of the socially competent child this analysis interrogates the performance product Precious, child participation modes, the intersection between the professional artists, teacher artists and child artists and outcomes in terms of building capacities for the development of social competencies in children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a spatiotemporal mathematical model of chlamydial infection, host immune response and spatial movement of infectious particles. The re- sulting partial differential equations model both the dynamics of the infection and changes in infection profile observed spatially along the length of the host genital tract. This model advances previous chlamydia modelling by incorporating spatial change, which we also demonstrate to be essential when the timescale for movement of infectious particles is equal to, or shorter than, the developmental cycle timescale. Numerical solutions and model analysis are carried out, and we present a hypothesis regarding the potential for treatment and prevention of infection by increasing chlamydial particle motility.