968 resultados para Chronic lymphoproliferative disorders. Immunophenotyping. Immune system lymphoma
Resumo:
ABSTRACT: Background: Sleep is integral to biological function and sleep disruption can result in both physiological and psychological dysfunction. The acute cognitive consequences of sleep loss has been an active field of recent investigation, evidence suggests that sleep disruption in critically ill older adults can result in acute decrements in cognitive functioning. Surgery activates the innate immune system, inducing neuroinflammatory changes that interfere with cognition. The fact that patients with sleep disorders have an increased likelihood of exhibiting postoperative delirium encourages us to investigate the contribution of perioperative SF to the neuroinflammatory and cognitive responses of surgery. Methods: The effects of 24h sleep fragmentation (SF) and surgery were explored on adult C57BL/6J male mice. SF procedure started at 7 am with the home-cages being placed on a large platform orbital shaker cycled every 120 seconds (30 sec on/90 sec off). This procedure lasted for 24h. Stabilized tibia fracture was performed either before or after the 24h SF procedure. Separate cohorts of mice were tested for systemic and hippocampal inflammation and cognition. Results: Twenty-four hours of SF induced non-hippocampal memory dysfunction and increase in systemic IL-6. SF and surgery caused hippocampal-dependent memory impairment, although memory impairment was not exacerbated by combining SF with surgery. One day after either SF or surgery there was a significant increase in IL6 mRNA and TNF-alpha mRNA. These increments were more pronounced when either pre or post operative SF was combined with surgery. Conclusions: We show that while SF and surgery can independently produce significant memory impairment, perioperative SF significantly increased hippocampal inflammation without further cognitive impairment. The dissociation between neuroinflammation and cognitive decline may relate to our use of a sole memory paradigm that does not capture other aspects of cognition, especially learning.
Resumo:
Visceral leishmaniasis (VL) or kala-azar, a disseminated infection of the lymphoreticular system of the body, is marked by severe defect in immune system of the host. Successful cure of VL depends on the immune status of the host in combination with the effects of the antileishmanial drugs. The rationale approach towards eradication of this disease would be to potentiate the immune functioning of the host in addition to parasite killing. This review deals with different aspects of adaptive and innate immune responses and explores their role in protection or pathogenesis of VL. IL-10 has emerged as the principal cytokine responsible for disease pathogenesis, although evidences regarding its source during active VL remain inconclusive. On the other hand, IFNγ, under the influence of IL-12, is mostly correlated with healing of the disease. Chemokines are important in mounting cell-mediated immune response as they can prevent parasite invasion in association with cytokines. Different types of T cells like CD4, CD8 and NK T cells also contribute to the immunology of this disease. In spite of conflicting reports, the role of regulatory T cells in VL pathogenesis is important. Recently discovered Th17 subset and its different members have been reported to perform diverse functions in the course of VL and leishmaniasis as a whole. Innate immune responses, depending on the cell types, are essential in early parasite detection and subsequent development of an efficient NK cell response. Immunotherapy targeting IL-10 could be looked upon as an interesting option for the treatment of VL.
Resumo:
Epstein-Barr virus (EBV)-related post-transplant lymphoproliferative disease (PTLD) is one of the most serious complications associated with solid organ and hematopoietic stem cell transplantation. PTLD is most frequently seen with primary EBV infection post-transplant, a common scenario for pediatric solid organ recipients. Risk factors for infection or reactivation of EBV following solid organ transplant are stronger immunosuppressive therapy regimens, and being seronegative for receptor. For hematopoietic stem cell transplantation, the risk factors relate to the type of transplant, human leukocyte antigen disparity, the use of stronger immunosuppressants, T-cell depletion, and severe graft-versus-host disease. Mortality is high, and most frequent in patients who develop PTLD in the first six months post-transplant. The primary goal of this article is to provide an overview of the clinical manifestations, diagnosis, accepted therapies, and management of EBV infection in transplant recipients, and to suggest that the adoption of monitoring protocols could contribute to a reduction in related complications.
Resumo:
Objective: Immunosenescence and cognitive decline are common markers of the aging process. Taking into consideration the heterogeneity observed in aging processes and the recently described link between lymphocytes and cognition, we herein explored the possibility of an association between alterations in lymphocytic populations and cognitive performance. Methods: In a cohort of cognitively healthy adults (n = 114), previously characterized by diverse neurocognitive/psychological performance patterns, detailed peripheral blood immunophenotyping of both the innate and adaptive immune systems was performed by flow cytometry. Results: Better cognitive performance was associated with lower numbers of effector memory CD4(+) T cells and higher numbers of naive CD8(+) T cells and B cells. Furthermore, effector memory CD4(+) T cells were found to be predictors of general and executive function and memory, even when factors known to influence cognitive performance in older individuals (e.g., age, sex, education, and mood) were taken into account. Conclusions: This is the first study in humans associating specific phenotypes of the immune system with distinct cognitive performance in healthy aging.
Resumo:
The immune system can recognize virtually any antigen, yet T cell responses against several pathogens, including Mycobacterium tuberculosis, are restricted to a limited number of immunodominant epitopes. The host factors that affect immunodominance are incompletely understood. Whether immunodominant epitopes elicit protective CD8+ T cell responses or instead act as decoys to subvert immunity and allow pathogens to establish chronic infection is unknown. Here we show that anatomically distinct human granulomas contain clonally expanded CD8+ T cells with overlapping T cell receptor (TCR) repertoires. Similarly, the murine CD8+ T cell response against M. tuberculosis is dominated by TB10.44-11-specific T cells with extreme TCRß bias. Using a retro genic model of TB10.44-11-specific CD8+ Tcells, we show that TCR dominance can arise because of competition between clonotypes driven by differences in affinity. Finally, we demonstrate that TB10.4-specific CD8+ T cells mediate protection against tuberculosis, which requires interferon-? production and TAP1-dependent antigen presentation in vivo. Our study of how immunodominance, biased TCR repertoires, and protection are inter-related, provides a new way to measure the quality of T cell immunity, which if applied to vaccine evaluation, could enhance our understanding of how to elicit protective T cell immunity.
Resumo:
La enfermedad de Chagas, causada por Trypanosoma cruzi, constituye la principal miocarditis infecciosa a nivel mundial. Crecientes evidencias revelan que la respuesta inmune innata tendrÃa un rol determinante en la fisiopatologÃa de las enfermedades cardiovasculares. La inmunidad innata es la primera lÃnea de defensa, no especÃfica, preprogramada para combatir agentes infecciosos. Este sistema censa la presencia de antÃgenos extraños a través de los receptores tipo toll (TLR) produciendo citoquinas y activando mecanismos microbicidas. Sin embargo, los TLRs también se hayan distribuidos en las células parenquimales no inmunes, jugando un importante rol tanto en la defensa como en la homeostasis de cada tejido. Durante la etapa aguda de la infección, el T. cruzi invade y se replica dentro de una amplia variedad de células y tejidos. Pero posteriormente, los parásitos son efectivamente eliminados de la mayorÃa de los tejidos persistiendo durante toda la vida en las células del músculo cardÃaco y esquelético de los pacientes infectados. Debido a que el mantenimiento de la célula cardÃaca infectada es crÃtica para la patogénesis de la enfermedad, los mecanismos que participan en la sobrevida de los cardiomiocitos están siendo foco de nuestro estudio. Hemos demostrado, que la infección ejerce efectos antiapoptóticos sobre células cardÃacas aisladas. Nuestra hipótesis es que la inmunidad innata cardÃaca estarÃa involucrada en el mantenimiento de la sobrevida de los miocitos asà como en la defensa contra el parásito. Objetivo general: determinar la participación de la respuesta inmune innata cardÃaca en el desarrollo de la enfermedad de Chagas experimental murina. Objetivos especÃficos: 1) Analizar el compromiso de TLRs en la respuesta anti-apoptótica y de autofagia de cardiomiocitos aislados de ratones salvajes y de ratones deficientes en TLR4, TLR2 y en MyD88, molécula adaptadora de la señalización por TLRs, sometidos a la infección con el parásito. 2) Determinar la importancia de la actividad cisteÃn proteasa parasitaria en el grado de infectividad y la sobrevida de cultivos primarios de ratones salvajes infectados con parásitos transgénicos que poseen disminuÃda o nula actividad cisteÃn proteasa. 3) Establecer la cinética de expresión de TLR2/TLR6, TLR4 y TLR9, factores antiapoptóticos (Bcl-2, Bcl-xL, etc.), daño cardÃaco y la carga parasitaria en el tejido cardÃaco de ratones infectados salvajes y/o deficientes antes mencionados. Materiales y Métodos: Los animales serán infectados i.p. con 5x103 parásitos y se determinará la cinética de expresión de los mediadores mencionados por western blot e inmunofluorescencia, la carga parasitaria será determinada por qRT-PCR. Como controles se procesarán animales inyectados con solución salina. En cultivos primarios de cardiomiocitos de ratones neonatos salvajes y deficientes infectados se estudiará la carga parasitaria, la activación de los mecanismos microbicidas (producción de óxido nÃtrico, metabolitos reactivos del oxÃgeno y del nitrógeno, ciclooxigenasa, etc.), producción de citoquinas y expresión de moléculas anti-apoptóticas (Bcl-2, Bcl-xL, Bax, etc.). Se explorará la tasa de apoptosis en cultivos deprivados de suero. La autofagia se analizará por microscopia electrónica. Cultivos controles serán mantenidos en medio o tratados con ligandos de los diferentes TLRs. Resultados preliminares sugieren que tanto TLR2 como Bcl-2 se incrementan en tejido cardÃaco infectado. Esto nos lleva a profundizar en los mecanismos observados en cultivos y estudiarlos en un modelo in vivo, analizando la posible importancia que tiene la inmunidad innata cardÃaca en el control del establecimiento de la infección. La comprensión de los mecanismos que mantienen la sobrevida de los cardiomiocitos y su respuesta a la infección es importante ya que el conocimiento de las bases moleculares es fundamental para el desarrollo de nuevos agentes quimioterapéuticos. Chagas disease is endemic in Central and South America and causes the most common myocarditis worldwide. We have previously reported that the cardiotrophic parasite Trypanosoma cruzi, its etiological agent, protects cardiomyocytes against apoptosis induced by growth factor deprivation activating the PI3K/Akt and MEK1/ERK signaling pathways. Recent studies have shown that local innate immunity plays a key role in initiating and coordinating homeostatic as well as defense responses in the heart. One of the mechanisms by which the innate immune system senses the presence of foreign antigens is through TLRs. The stimulation of these receptors leads to the activation and nuclear translocation of NF-kB transcription factor and the production of cytokines. Proinflammatory cytokines, in turn, appear to play a central role in the orchestration and timing of the intrinsic cardiac stress response providing, under different situations, instantaneous anti-apoptotic cytoprotective signals, which allow tissue repair and/or remodeling. The aim of the present project is to study the cardiomyocyte innate immune responses to T. cruzi infection and its role in target cell protection from apoptosis. Specific objectives: 1) Study the mechanism triggered by TLR in the anti-apoptotic response and parasite load of infected cardiomyocyte primary cultures from wild type and mice deficient in TLR2, TLR4 or MyD88. 2) Determine the effect of parasite cisteÃn protease activity on primary cultures from wild type mice. 3) Determine the TLR signaling-involvement in parasite load and survival indicators in deficient mice. Preliminary results showed us that cardiac-TLR2 may be involved in the anti-apoptotic effect elicited by the parasite and prompted us to establish the mechanisms triggered by the innate immunity that mediate parasite persistence within the host cell.
Resumo:
Introduction: We previously reported the results of a phase II study for patients with newly diagnosed primary CNS lymphoma (PCNSL) treated with autologous peripheral blood stem-cell transplantation (aPBSCT) and responseadapted whole brain radiotherapy (WBRT). The purpose of this report is to update the initial results and provide long-term data regarding overall survival, prognostic factors, and the risk of treatment-related neurotoxicity.Methods: A long-term follow-up was conducted on surviving primary central nervous system lymphoma patients having been treated according to the ,,OSHO-53 study", which was initiated by the Ostdeutsche Studiengruppe Hamatologie-Onkologie. Between August 1999 and October 2004 twentythree patients with an average age of 55 and median Karnofsky performance score of 70% were enrolled and received high-dose mthotrexate (HD-MTX) on days 1 and 10. In case of at least a partial remission (PR), high-dose busulfan/ thiotepa (HD-BuTT) followed by aPBSCT was performed. Patients without response to induction or without complete remission (CR) after HD-BuTT received WBRT. All patients (n=8), who are alive in 2011, were contacted and Mini Mental State examination (MMSE) and the EORTC QLQ-C30 were performed.Results: Eight patients are still alive with a median follow-up of 116,9 months (79 - 141, range). One of them suffered from a late relapse eight and a half years after initial diagnosis of PCNSL, another one suffers from a gall bladder carcinoma. Both patients are alive, the one with the relapse of PCNSL has finished rescue therapy and is further observed, the one with gall baldder carcinoma is still under therapy. MMSE and QlQ-C30 showed impressive results in the patients, who were not irradiated. Only one of the irradiated patients is still alive with a clear neurologic deficit but acceptable quality of life.Conclusions: Long-term follow-up of our patients, who were included in the OSHO-53 study show an overall survival of 30 percent. If WBRT can be avoided no long-term neurotoxicity has been observed and the patients benefit from excellent Quality of Life. Induction chemotherapy with two cycles of HD-MTX should be intensified to improve the unsatisfactory OAS of 30 percent.
Covariation between colony social structure and immune defences of workers in the ant Formica selysi
Resumo:
Several ant species vary in the number of queens per colony, yet the causes and consequences of this variation remain poorly understood. In previous experiments, we found that Formica selysi workers originating from multiple-queen (=polygyne) colonies had a lower resistance to a fungal pathogen than workers originating from single-queen (=monogyne) colonies. In contrast, group diversity improved disease resistance in experimental colonies. This discrepancy between field and experimental colonies suggested that variation in social structure in the field had antagonistic effects on worker resistance, possibly through a down-regulation of the immune system balancing the positive effect of genetic diversity. Here, we examined if workers originating from field colonies with alternative social structure differed in three major components of their immune system. We found that workers from polygyne colonies had a lower bacterial growth inhibitory activity than workers from monogyne colonies. In contrast, workers from the two types of colonies did not differ significantly in bacterial cell wall lytic activity and prophenoloxidase activity. Overall, the presence of multiple queens in a colony correlated with a slight reduction in one inducible component of the immune system of individual workers. This reduced level of immune defence might explain the lower resistance of workers originating from polygyne colonies despite the positive effect of genetic diversity. More generally, these results indicate that social changes at the group level can modulate individual immune defences.
Resumo:
AbstractThe vertebrate immune system is composed of the innate and the adaptive branches. Innate immune cells represent the first line of defense and detect pathogens through pattern recognition receptors (PRRs), detecting evolutionary conserved pathogen- and danger- associated molecular patterns. Engagement of these receptors initiates the inflammatory response, but also instructs antigen-specific adaptive immune cells. NOD-like receptors (NLRs) are an important group of PRRs, leading to the production of inflammatory mediators and favoring antigen presentation to Τ lymphocytes through the regulation of major histocompatibility complex (MHC) molecules.In this work we focused our attention on selected NOD-like receptors (NLRs) and their role at the interface between innate and adaptive immunity. First, we describe a new regulatory mechanism controlling IL-1 production. Our results indicate that type I interferons (IFNs) block NLRP1 and NLRP3 inflammasome activity and interfere with LPS-driven proIL-Ια and -β induction. As type I IFNs are produced upon viral infections, these anti-inflammatory effects of type I IFN could be relevant in the context of superinfections, but could also help explaining the efficacy of IFN-β in multiple sclerosis treatment.The second project addresses the role of a novel NLR family member, called NLRC5. The function of this NLR is still matter of debate, as it has been proposed as both an inhibitor and an activator of different inflammatory pathways. We found that the expression of this protein is restricted to immune cells and is positively regulated by IFNs. We generated Nlrc5-deficient mice and found that this NLR plays an essential role in Τ, NKT and, NK lymphocytes, in which it drives the expression of MHC class I molecules. Accordingly, we could show that CD8+ Τ cell-mediated killing of target lymphocytes lacking NLRC5 is strongly impaired. Moreover, NLRC5 expression was found to be low in many lymphoid- derived tumor cell lines, a mechanism that could be exploited by tumors to escape immunosurveillance.Finally, we found NLRC5 to be involved in the production of IL-10 by CD4+ Τ cells, as Nlrc5- deficient Τ lymphocytes produced less of this cytokine upon TCR triggering. In line with these observations, Mrc5-deficient CD4+ Τ cells expanded more than control cells when transferred into lymphopenic hosts and led to a more rapid appearance of colitis symptoms. Therefore, our work gives novel insights on the function of NLRC5 by using knockout mice, and strongly supports the idea that NLRs direct not only innate, but also adaptive immune responses.
Resumo:
P fimbriae are proteinaceous appendages on the surface of Escherichia coli bacteria that mediate adherence to uroepithelial cells. E. coli that express P fimbriae account for the majority of ascending urinary tract infections in women with normal urinary tracts. The hypothesis that P fimbriae on uropathic E. coli attach to renal epithelia and may regulate the immune response to establish infection was investigated. The polymeric Ig receptor (pIgR), produced by renal epithelia, transports IgA into the urinary space. Kidney pIgR and urine IgA levels were analyzed in a mouse model of ascending pyelonephritis, using E. coli with (P+) and without (P-) P fimbriae, to determine whether P(+) E. coli regulate epithelial pIgR expression and IgA transport into the urine. (P+) E. coli establish infection and persist to a greater amount than P(-) E. coli. P(+)-infected mice downregulate pIgR mRNA and protein levels compared with P(-)-infected or PBS controls at > or =48 h. The decrease in pIgR was associated with decreased urinary IgA levels in the P(+)-infected group at 48 h. pIgR mRNA and protein also decline in P(+) E. coli-infected LPS-hyporesponsive mice. These studies identify a novel virulence mechanism of E. coli that express P fimbriae. It is proposed that P fimbriae decrease pIgR expression in the kidney and consequently decrease IgA transport into the urinary space. This may explain, in part, how E. coli that bear P fimbriae exploit the immune system of human hosts to establish ascending pyelonephritis.
Resumo:
Parasites can inflict indirect fitness costs to their hosts by eliciting costly immune responses. These costs depend on the type and amount of immunostimulants presented to the host immune system but also on the amount of resources available to fuel host immune responses. Here, we investigated how the relative costs of two different types of immune challenge are modulated by variation in food availability. We injected nestling tawny owls (Strix aluco) with either 10 mu g of phytohaemagglutinin (PHA) or 20 mu g of lipopolysaccharide (LPS), and subsequently raised them under two different food regimes (food-restricted vs. ad libitum). After controlling for food consumption, we found that LPS-injected nestlings lost more body mass than PHA-injected ones only when food-restricted. We also found that body mass gain of owlets fed ad libitum decreased with the intensity of the skin swelling response against LPS, but not PHA. These experimental and correlative results suggest that nestling tawny owls suffered greater immune costs when treated with LPS than PHA, and that variation in the costs of two different types of immune challenge can be exacerbated under conditions of low food availability. Our study highlights the importance of taking into consideration the interplay between host immunity and nutrition in the study of indirect costs of parasitism.
Resumo:
Previous work in our laboratory, mainly foccused the prospects of achieving resistance against Schistosoma mansoni infection with adult worm-derived antigens in the form of a soluble extract (SE). This extract obtained by incubation of living adult schistosomes in saline, contains a large number of distinct molecules and was actually shown to be a significantly protective in different outbred animals models such as Swiss mice and rabbits. It thus appeared worthwile to investigate the potencial protective activity of SE in different inbred strains of mice, known to be highly susceptible to the infection. Herein we present data showing that DBA/2 mice, once immunized with SE acquire significant levels of resistance to a S. mansoni cercarial challenge. In addition, preliminary studies on the immune system of immunized animals reveled that, injection of SE caused no general inbalance of B or T cell responses.
Resumo:
Abstract: The increasingly high hygienic standards characterizing westernized societies correlate with an increasingly high prevalence of allergic disease. Initially based on these observations, the hygiene hypothesis postulates that reduced microbial stimulation during infancy impairs the immune system development and increases the risk of allergy. Moreover, there is increasing evidence that the crosstalk existing between the intestine and the resident microbiota is crucial for gut homeostasis. In particular, bacterial colonization of the gut affects the integrity of the gut barrier and stimulates the development of the gut associated immune tissue, both phenomena being essential for the immune system to mount a controlled response to food antigens. Therefore, alterations in the microbial colonization process, by compromising the barrier homeostasis, may increase the risk of food allergy. In this context, antibiotic treatment, frequently prescribed during infancy, affects gut colonization by bacteria. However, little is known about the impact of alterations in the colonization process on the maturation of the gut barrier and on the immunological response to oral antigens. The objective of this work was to determine the impact of a commercial antibiotic preparation employed in pediatric settings on the gut barrier status at the critical period of the suckling/weaning transition and to evaluate the physiological consequences of this treatment in terms of immune response to food antigens. We established an antibiotic-treated suckling rat model relevant to the pediatric population in terms of type, dose and route of administration of the antibiotic and of changes in the patterns of microbial colonization. Oral tolerance to a novel luminal antigen (ovalbumin) was impaired when the antigen was introduced during antibiotic treatment. These results paralleled to alterations in the intestinal permeability to macromolecules and reduced intestinal expression of genes coding for the major histocomptatibility complex II molecules, which suggest a reduced capacity of antigen handling and presentation in the intestine of the antibiotic-treated animals. In addition, low luminal IgA levels and reduced intestinal expression of genes coding for antimicrobial proteins suggest that protection against pathogens was reduced under antibiotic treatment. In conclusion, we observed in suckling rats that treatment with abroad-spectrum antibiotic commonly used in pediatric practices reduced the capacity of the immune system to develop tolerance. The impact of the antibiotic treatment on the immune response to the antigen-was likely mediated by the alterations of the gut microbiota, through impairment in the mechanisms of antigen handling and presentation. This work reinforces the body of data supporting a key role of the intestinal microbiota modulating the risk of allergy development and leads us to propose that the introduction of new food antigens should be avoided during antibiotic treatment in infants. Résumé: L'augmentation du niveau d'hygiène caractérisant les sociétés occidentales semble être fortement corrélée avec l'augmentation des cas d'allergie dans ces pays. De cette observation est née l'hypothèse qu'une diminution des stimuli microbiens pendant l'enfance modifie le développement du système immunitaire augmentant ainsi le risque d'allergie. En ce sens, un nombre croissant de données indiquent que les interactions existant entre l'intestin et les bactéries résidantes sont cruciales pour l'équilibre du système. En effet, la présence de bactéries dans l'intestin affecte l'intégrité de sa fonction de barrière et stimule le développement du système immunitaire intestinal. Ces deux paramètres étant essentiels à la mise en place d'une réponse contrôlée vis à vis d'un antigène reçu oralement, toute modification du processus naturel de colonisation compromettant l'équilibre intestinal pourrait augmenter le risque d'allergie. Les traitements aux antibiotiques, fréquemment prescrits en pédiatrie, modifient de façon conséquente le processus de colonisation bactérienne. Cependant peu de données existent concernant l'impact d'une altération du processus de colonisation sur la maturation de la barrière intestinale et de la réponse immunitaire dirigée contre un antigène. L'objectif de ce travail était de déterminer l'impact d'un antibiotique commercial et employé en pédiatrie sur l'état de la barrière intestinale au moment critique du sevrage et d'évaluer les conséquences physiologiques d'un tel traitement sur la réponse immune à un antigène alimentaire. Nous avons mis en place un modèle de rats allaités, traités à l'antibiotique, le plus proche possible des pratiques pédiatriques, en terme de nature, dose et voie d'administration de l'antibiotique. Nous avons constaté que l'établissement de la tolérance orale à un nouvel antigène (l'ovalbumine) est altéré quand celui-ci est donné pour la première fois au cours du traitement antibiotique. Ces résultats coïncident avec une diminution de la perméabilité intestinale aux macromolécules, ainsi qu'avec une diminution de l'expression des gènes codant pour les molécules du complexe majeur d'histocomptatibilité de classe II, suggérant une modification de l'apprêtement et de la présentation de l'antigène au niveau intestinal chez les rats traités à l'antibiotique. De plus, un faible taux d'IgA et une diminution de l'expression des gènes codant pour des protéines antimicrobiennes, observés après l'administration d'antibiotique, laissent à penser que la protection contre un pathogène est diminuée lors d'un traitement antibiotique. En conclusion, nous avons observé qu'un traitement antibiotique à large spectre d'activité, couramment utilisé en pédiatrie, réduit la capacité d'induction de la tolérance orale chez le rat allaité. L'impact du traitement antibiotique sur la réponse immune semble induite par l'altération de la flore intestinale via son effet sur les mécanismes d'apprêtement et de présentation de l'antigène. Ce travail renforce l'ensemble des données existantes qui accorde à la flore intestinale un rôle clef dans la modulation du risque de développement d'allergie et nous amène à recommander d'éviter l'introduction d'un nouvel aliment lorsqu'un enfant est traité aux antibiotiques.
Resumo:
The interaction of Schistosoma mansoni with its host's immune system is largely affected by multiple specific and non-specific evasion mechanisms employed by the parasite to reduce the host's immune reactivity. Only little is known about these mechanisms on the molecular level. The four molecules described below are intrinsic parasitic proteins recently identified and studied in our laboratory. 1. m28-A 28kDa membrane serine protease. m28 cleaves iC3b and can thus restrict attack by effector cells utilizing complement receptors (especially CR3). Treatment with protease inhibitors potentiates killing of schistosomula by complement plus neutrophils. 2. Smpi56-A 56kDa serine protease inhibitor. Smpi56 binds covalently to m28 and to neutrophil's elastase and blocks their proteolytic activity. 3. P70-A 70kDa C3b binding protein. The postulated activity of P70 includes binding to C3b and blocking of complement activation of the C3 step. 4. SCIP-1-A 94kDa schistosome complement inhibitor. SCIP-1 shows antigenic and functional similarities to the human 18kDa complement inhibitor CD59. Like CD59, SCIP-1 binds to C8 and C9 and blocks formation of the complement membrane attack complex. Antibodies directed to human CD59 bind to schistosomula and potentiate their killing by complement. The structure and function of these four proteins as well as their capacity to induce protection from infection with S. mansoni are under investigation.
Resumo:
Macrophages are essential effector cells of innate immunity that play a pivotal role in the recognition and elimination of invasive microorganisms. Mediators released by activated macrophages orchestrate innate and adaptive immune host responses. The cytokine macrophage migration inhibitory factor (MIF) is an integral mediator of the innate immune system. Monocytes and macrophages constitutively express large amounts of MIF, which is rapidly released after exposure to bacterial toxins and cytokines. MIF exerts potent proinflammatory activities and is an important cytokine of septic shock. Recent investigations of the mechanisms by which MIF regulates innate immune responses to endotoxin and gram-negative bacteria indicate that MIF acts by modulating the expression of Toll-like receptor 4, the signal-transducing molecule of the lipopolysaccharide receptor complex. Given its role in innate immune responses to bacterial infections, MIF is a novel target for therapeutic intervention in patients with septic shock.