999 resultados para Chemiluminescent measurements


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Much of the chemistry that affects life on planet Earth occurs in the condensed phase. The TeraHertz (THz) or far-infrared (far-IR) region of the electromagnetic spectrum (from 0.1 THz to 10 THz, 3 cm-1 to 300 cm-1, or 3000 μm to 30 μm) has been shown to provide unique possibilities in the study of condensed-phase processes. The goal of this work is to expand the possibilities available in the THz region and undertake new investigations of fundamental interest to chemistry. Since we are fundamentally interested in condensed-phase processes, this thesis focuses on two areas where THz spectroscopy can provide new understanding: astrochemistry and solvation science. To advance these fields, we had to develop new instrumentation that would enable the experiments necessary to answer new questions in either astrochemistry or solvation science. We first developed a new experimental setup capable of studying astrochemical ice analogs in both the TeraHertz (THz), or far-Infrared (far-IR), region (0.3 - 7.5 THz; 10 - 250 cm-1) and the mid-IR (400 - 4000 cm-1). The importance of astrochemical ices lies in their key role in the formation of complex organic molecules, such as amino acids and sugars in space. Thus, the instruments are capable of performing variety of spectroscopic studies that can provide especially relevant laboratory data to support astronomical observations from telescopes such as the Herschel Space Telescope, the Stratospheric Observatory for Infrared Astronomy (SOFIA), and the Atacama Large Millimeter Array (ALMA). The experimental apparatus uses a THz time-domain spectrometer, with a 1750/875 nm plasma source and a GaP detector crystal, to cover the bandwidth mentioned above with ~10 GHz (~0.3 cm-1) resolution.

Using the above instrumentation, experimental spectra of astrochemical ice analogs of water and carbon dioxide in pure, mixed, and layered ices were collected at different temperatures under high vacuum conditions with the goal of investigating the structure of the ice. We tentatively observe a new feature in both amorphous solid water and crystalline water at 33 cm-1 (1 THz). In addition, our studies of mixed and layered ices show how it is possible to identify the location of carbon dioxide as it segregates within the ice by observing its effect on the THz spectrum of water ice. The THz spectra of mixed and layered ices are further analyzed by fitting their spectra features to those of pure amorphous solid water and crystalline water ice to quantify the effects of temperature changes on structure. From the results of this work, it appears that THz spectroscopy is potentially well suited to study thermal transformations within the ice.

To advance the study of liquids with THz spectroscopy, we developed a new ultrafast nonlinear THz spectroscopic technique: heterodyne-detected, ultrafast THz Kerr effect (TKE) spectroscopy. We implemented a heterodyne-detection scheme into a TKE spectrometer that uses a stilbazoiumbased THz emitter, 4-N,N-dimethylamino-4-N-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonate (DSTMS), and high numerical aperture optics which generates THz electric field in excess of 300 kV/cm, in the sample. This allows us to report the first measurement of quantum beats at terahertz (THz) frequencies that result from vibrational coherences initiated by the nonlinear, dipolar interaction of a broadband, high-energy, (sub)picosecond THz pulse with the sample. Our instrument improves on both the frequency coverage, and sensitivity previously reported; it also ensures a backgroundless measurement of the THz Kerr effect in pure liquids. For liquid diiodomethane, we observe a quantum beat at 3.66 THz (122 cm-1), in exact agreement with the fundamental transition frequency of the υ4 vibration of the molecule. This result provides new insight into dipolar vs. Raman selection rules at terahertz frequencies.

To conclude we discuss future directions for the nonlinear THz spectroscopy in the Blake lab. We report the first results from an experiment using a plasma-based THz source for nonlinear spectroscopy that has the potential to enable nonlinear THz spectra with a sub-100 fs temporal resolution, and how the optics involved in the plasma mechanism can enable THz pulse shaping. Finally, we discuss how a single-shot THz detection scheme could improve the acquisition of THz data and how such a scheme could be implemented in the Blake lab. The instruments developed herein will hopefully remain a part of the groups core competencies and serve as building blocks for the next generation of THz instrumentation that pushes the frontiers of both chemistry and the scientific enterprise as a whole.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mean velocity profiles were measured in the 5” x 60” wind channel of the turbulence laboratory at the GALCIT, by the use of a hot-wire anemometer. The repeatability of results was established, and the accuracy of the instrumentation estimated. Scatter of experimental results is a little, if any, beyond this limit, although some effects might be expected to arise from variations in atmospheric humidity, no account of this factor having been taken in the present work. Also, slight unsteadiness in flow conditions will be responsible for some scatter.

Irregularities of a hot-wire in close proximity to a solid boundary at low speeds were observed, as have already been found by others.

That Kármán’s logarithmic law holds reasonably well over the main part of a fully developed turbulent flow was checked, the equation u/ut = 6.0 + 6.25 log10 yut/v being obtained, and, as has been previously the case, the experimental points do not quite form one straight line in the region where viscosity effects are small. The values of the constants for this law for the best over-all agreement were determined and compared with those obtained by others.

The range of Reynolds numbers used (based on half-width of channel) was from 20,000 to 60,000.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pulsed neutron technique has been used to investigate the decay of thermal neutrons in two adjacent water-borated water finite media. Experiments were performed with a 6x6x6 inches cubic assembly divided in two halves by a thin membrane and filled with pure distilled water on one side and borated water on the other side.

The fundamental decay constant was measured versus the boric acid concentration in the poisoned medium. The experimental results showed good agreement with the predictions of the time dependent diffusion model. It was assumed that the addition of boric acid increases the absorption cross section of the poisoned medium without affecting its diffusion properties: In these conditions, space-energy separability and the concept of an “effective” buckling as derived from diffusion theory were introduced. Their validity was supported by the experimental results.

Measurements were performed with the absorption cross section of the poisoned medium increasing gradually up to 16 times its initial value. Extensive use of the IBM 7090-7094 Computing facility was made to analyze properly the decay data (Frantic Code). Attention was given to the count loss correction scheme and the handling of the statistics involved. Fitting of the experimental results into the analytical form predicted by the diffusion model led to

Ʃav = 4721 sec-1 (±150)

Do = 35972 cm2sec-1 (±800) for water at 21˚C

C (given) = 3420 cm4sec-1

These values, when compared with published data, show that the diffusion model is adequate in describing the experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Q values and 0o cross sections of (He3, n) reactions forming seven proton-rich nuclei have been measured with accuracies varying from 6 to 18 keV. The Q values (in keV) are: Si26 (85), S30 (-573), Ar34 (-759), Ti42 (-2865), Cr48 (5550), Ni56 (4513) and Zn60 (818). At least one excited state was found for all but Ti42. The first four nuclei complete isotopic spin triplets; the results obtained agree well with charge-symmetry predictions. The last three, all multiples of the α particle, are important in the α and e-process theories of nucleo-synthesis in stars. The energy available for β decay of these three was found by magnetic spectrometer measurements of the (He3, p) Q values of reactions leading to V48, Co56, and Cu60. Many excited states were seen: V48 (3), Co56 (15), Cu60 (23). The first two states of S30 are probably 0+ and 2+ from (He3, n) angular distribution measurements. Two NaI γ-ray measurements are described: the decay of Ar34 (measured Ƭ1/2 = 1.2 ± 0.3s) and the prompt γ-ray spectrum from Fe54(He3, nγ)Ni56. Possible collective structure in Ni56 and Ca40, both doubly magic, is discussed.

The (He3, n) neutron energy and yield measurements utilized neutron-induced nuclear reactions in a silicon semiconductor detector. Cross sections for the most important detection processes, Si28 (n, α) Mg25 and Si28 (n, p) Al28, are presented for reactions leading to the first four states of both residual nuclei for neutron energies from 7.3 to 16.4 MeV. Resolution and pulse-height anomalies associated with recoil Mg25 and Al28 ions are discussed. The 0o cross section for Be9 (α, n) C12, used to provide calibration neutrons, has been measured with a stilbene spectrometer for no (5.0 ≤ Eα ≤ 12 MeV), n1 (4.3 ≤ Eα ≤ 12.0 MeV) and n2 (6.0 ≤ Eα ≤ 10.1 MeV). Resonances seen in the no yield may correspond to nine new levels in C13.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple method for measuring the radius of curvature of laser beams is introduced. It has been developed to estimate the astigmatic aberration of a diode laser. Compared with the interferornetry, this method is convenient and straightforward. (c) 2005 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Precise measurements of the total reaction cross section for 3He(3He,2p)4He He have been made in the range of center-of-mass energies between 1100 keV and 80 keV. A differentially pumped gas target modified to operate with a limited quantity of the target gas was employed to minimize the uncertainties in the primary energy and energy straggle. Beam integration inside the target gas was carried out by a calorimetric device which measures the total energy spent in a heat sink rather than the total charge in a Faraday cup. Proton energy spectra have been obtained using a counter telescope consisting of a gas proportional counter and a surface barrier detector and angular distributions of these protons have been measured at seven bombarding energies. Cross section factors, S(E), have been calculated from the total cross sections and fitted to a linear function of energy over different ranges of energy. For Ecm < 500 keV

S(Ecm) = S0 + S1 Ecm

where S0 = (5.0 +0.6-0.4) MeV - barns and S1 = (-1.8 ± 0.5) barns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electronic Kαl x-ray isotope shifts have been measured for Sn 116-124, Sm 148-154, W 182-184, W 184-186, and W 182-186 using a curved crystal Cauchois spectrometer. The analysis of the measurements has included the electrostatic volume effect, screening by the transition electron as well as the non-transition electrons, normal and specific mass shifts, dynamical nuclear qudrupole polarization, and a radiative correction effect of the electron magnetic moment in the nuclear charge radii are obtained. Where other experimental data are available, the agreement with the present measurements is satisfactory. Comparisons with several nuclear model predictions yield only partial agreement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An air filled ionization chamber has been constructed with a volume of 552 liters and a wall consisting of 12.7 mg/cm2 of plastic wrapped over a rigid, lightweight aluminum frame. A calibration in absolute units, independent of previous Caltech ion chamber calibrations, was applied to a sealed Neher electrometer for use in this chamber. The new chamber was flown along with an older, argon filled, balloon type chamber in a C-135 aircraft from 1,000 to 40,000 feet altitude, and other measurements of sea level cosmic ray ionization were made, resulting in the value of 2.60 ± .03 ion pairs/cm3 sec atm) at sea level. The calibrations of the two instruments were found to agree within 1 percent, and the airplane data were consistent with previous balloon measurements in the upper atmosphere. Ionization due to radon gas in the atmosphere was investigated. Absolute ionization data in the lower atmosphere have been compared with results of other observers, and discrepancies have been discussed.

Data from a polar orbiting ion chamber on the OGO-II, IV spacecraft have been analyzed. The problem of radioactivity produced on the spacecraft during passes through high fluxes of trapped protons has been investigated, and some corrections determined. Quiet time ionization averages over the polar regions have been plotted as function of altitude, and an analytical fit is made to the data that gives a value of 10.4 ± 2.3 percent for the fractional part of the ionization at the top of the atmosphere due to splash albedo particles, although this result is shown to depend on an assumed angular distribution for the albedo particles. Comparisons with other albedo measurements are made. The data are shown to be consistent with balloon and interplanetary ionization measurements. The position of the cosmic ray knee is found to exhibit an altitude dependence, a North-South effect, and a small local time variation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large array has been used to investigate the P-wave velocity structure of the lower mantle. Linear array processing methods are reviewed and a method of nonlinear processing is presented. Phase velocities, travel times, and relative amplitudes of P waves have been measured with the large array at the Tonto Forest Seismological Observatory in Arizona for 125 earthquakes in the distance range of 30 to 100 degrees. Various models are assumed for the upper 771 km of the mantle and the Wiechert-Herglotz method applied to the phase velocity data to obtain a velocity depth structure for the lower mantle. The phase velocity data indicates the presence of a second-order discontinuity at a depth of 840 km, another at 1150 km, and less pronounced discontinuities at 1320, 1700 and 1950 km. Phase velocities beyond 85 degrees are interpreted in terms of a triplication of the phase velocity curve, and this results in a zone of almost constant velocity between depths of 2670 and 2800 km. Because of the uncertainty in the upper mantle assumptions, a final model cannot be proposed, but it appears that the lower mantle is more complicated than the standard models and there is good evidence for second-order discontinuities below a depth of 1000 km. A tentative lower bound of 2881 km can be placed on the depth to the core. The importance of checking the calculated velocity structure against independently measured travel times is pointed out. Comparisons are also made with observed PcP times and the agreement is good. The method of using measured values of the rate of change of amplitude with distances shows promising results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PART I

The total cross-section for the reaction 21Ne(α, n)24Mg has been measured in the energy range 1.49 Mev ≤ Ecm ≤ 2.6 Mev. The cross-section factor, S(O), for this reaction has been determined, by means of an optical model calculation, to be in the range 1.52 x 1012 mb-Mev to 2.67 x 1012 mb-Mev, for interaction radii in the range 5.0 fm to 6.6 fm. With S(O) ≈ 2 x 1012 mb-Mev, the reaction 21Ne(α, n)24Mg can produce a large enough neutron flux to be a significant astrophysical source of neutrons.

PART II

The reaction12C(3He, p)14N has been studied over the energy range 12 Mev ≤ Elab ≤ 18 Mev. Angular distributions of the proton groups leading to the lowest seven levels in 14N were obtained.

Distorted wave calculations, based on two-nucleon transfer theory, were performed, and were found to be reliable for obtaining the value of the orbital angular momentum transferred. The present work shows that such calculations do not yield unambiguous values for the spectroscopic factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new analytic solution has been obtained to the complete Fokker-Planck equation for solar flare particle propagation including the effects of convection, energy-change, corotation, and diffusion with ĸr = constant and ĸƟ ∝ r2. It is assumed that the particles are injected impulsively at a single point in space, and that a boundary exists beyond which the particles are free to escape. Several solar flare particle events have been observed with the Caltech Solar and Galactic Cosmic Ray Experiment aboard OGO-6. Detailed comparisons of the predictions of the new solution with these observations of 1-70 MeV protons show that the model adequately describes both the rise and decay times, indicating that ĸr = constant is a better description of conditions inside 1 AU than is ĸr ∝ r. With an outer boundary at 2.7 AU, a solar wind velocity of 400 km/sec, and a radial diffusion coefficient ĸr ≈ 2-8 x 1020 cm2/sec, the model gives reasonable fits to the time-profile of 1-10 MeV protons from "classical" flare-associated events. It is not necessary to invoke a scatter-free region near the sun in order to reproduce the fast rise times observed for directly-connected events. The new solution also yields a time-evolution for the vector anisotropy which agrees well with previously reported observations.

In addition, the new solution predicts that, during the decay phase, a typical convex spectral feature initially at energy To will move to lower energies at an exponential rate given by TKINK = Toexp(-t/ƬKINK). Assuming adiabatic deceleration and a boundary at 2.7 AU, the solution yields ƬKINK ≈ 100h, which is faster than the measured ~200h time constant and slower than the adiabatic rate of ~78h at 1 AU. Two possible explanations are that the boundary is at ~5 AU or that some other energy-change process is operative.