991 resultados para Chemical-extraction
Isolation and analysis of bioactive isoflavonoids and chalcone from a new type of Brazilian propolis
Resumo:
Activity-directed fractionation and purification processes were employed to identify isoflavonoids with antioxidant and antimicrobial activities from Brazilian red propolis. Crude propolis was extracted with ethanol (80%. v/v) and fractioned by liquid-liquid extraction technique using hexane and chloroform. Since chloroform fraction showed strong antioxidant and antimicrobial activities it was purified and isolated using various chromatographic techniques. Comparing our spectral data (UV, NMR, and mass spectrometry) with values found in the literature, we identified two bioactive isoflavonoids (vestitol and neovestitol), together with one chalcone (isoliquiritigenin). Vestitol presented higher antioxidant activity against beta-carotene consumption than neovestitol. The antimicrobial activity of these three compounds against Staphylococcus aureus, Streptococcus mutans, and Actinomyces naeslundii was evaluated and we concluded that isoliquiritigenin was the most active one with lower MIC, ranging from 15.6 to 62.5 mu g/mL. Our results showed that Brazilian red propolis has biologically active isoflavonoids that may be used as a mild antioxidant and antimicrobial for food preservation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Using a numerical implicit model for root water extraction by a single root in a symmetric radial flow problem, based on the Richards equation and the combined convection-dispersion equation, we investigated some aspects of the response of root water uptake to combined water and osmotic stress. The model implicitly incorporates the effect of simultaneous pressure head and osmotic head on root water uptake, and does not require additional assumptions (additive or multiplicative) to derive the combined effect of water and salt stress. Simulation results showed that relative transpiration equals relative matric flux potential, which is defined as the matric flux potential calculated with an osmotic pressure head-dependent lower bound of integration, divided by the matric flux potential at the onset of limiting hydraulic conditions. In the falling rate phase, the osmotic head near the root surface was shown to increase in time due to decreasing root water extraction rates, causing a more gradual decline of relative transpiration than with water stress alone. Results furthermore show that osmotic stress effects on uptake depend on pressure head or water content, allowing a refinement of the approach in which fixed reduction factors based on the electrical conductivity of the saturated soil solution extract are used. One of the consequences is that osmotic stress is predicted to occur in situations not predicted by the saturation extract analysis approach. It is also shown that this way of combining salinity and water as stressors yields results that are different from a purely multiplicative approach. An analytical steady state solution is presented to calculate the solute content at the root surface, and compared with the outputs of the numerical model. Using the analytical solution, a method has been developed to estimate relative transpiration as a function of system parameters, which are often already used in vadose zone models: potential transpiration rate, root length density, minimum root surface pressure head, and soil theta-h and K-h functions.
Resumo:
Relationships between the chemical composition of the 9th- to 11th-rib section and the chemical composition of the carcass and empty body were evaluated for Bos indicus (108 Nellore and 36 Guzerah; GuS) and tropically adapted Bos taurus (56 Caracu; CaS) bulls, averaging 20 to 24 mo of age at slaughter. Nellore cattle were represented by 56 animals from the selected herd (NeS) and 52 animals from the control herd (NeC). The CaS and GuS bulls were from selected herds. Selected herds were based on 20 yr of selection for postweaning BW. Carcass composition was obtained after grinding, homogenizing, sampling, and analyzing soft tissue and bones. Similarly, empty body composition was obtained after grinding, homogenizing, sampling, analyzing, and combining blood, hide, head + feet, viscera, and carcass. Bulls were separated into 2 groups. Group 1 was composed of 36 NeS, 36 NeC, 36 CaS, and 36 GuS bulls and had water, ether extract (EE), protein, and ash chemically determined in the 9th- to 11th-rib section and in the carcass. Group 2 was composed of 20 NeS, 16 NeC, and 20 CaS bulls and water, EE, protein, and ash were determined in the 9th-to 11th-rib section, carcass, and empty body. Linear regressions were developed between the carcass and the 9th-to 11th-rib section compositions for group 1 and between carcass and empty body compositions for group 2. The 9th-to 11th-rib section percentages of water (RWt) and EE (RF) predicted the percentages of carcass water (CWt) and carcass fat (CF) with high precision: CWt, % = 29.0806 + 0.4873 x RWt, % (r(2) = 0.813, SE = 1.06) and CF, % = 10.4037 + 0.5179 x RF, % (r(2) = 0.863, SE = 1.26), respectively. Linear regressions between percentage of CWt and CF and empty body water (EBWt) and empty body fat (EBF) were also predicted with high precision: EBWt, % = -9.6821 + 1.1626 x CWt, % (r(2) = 0.878, SE = 1.43) and EBF, % = 0.3739 + 1.0386 x CF, % (r(2) = 0.982, SE = 0.65), respectively. Chemical composition of the 9th-to 11th-rib section precisely estimated carcass percentages of water and EE. These regressions can accurately predict carcass and empty body compositions for Nellore, Guzerah, and Caracu breeds.
Resumo:
This study investigated the influence of heat treatment on the chemical composition of Eucalyptus saligna and Pinus caribaea var. hondurensis woods to understand its role in wood processing. E. saligna and P. caribaea var. hondurensis woods were treated in a laboratorial electric furnace at 120, 140, 160 and 180 degrees C to induce their heat treatment. The chemical composition of the resulting products and those from original wood were determined by gas chromatography. Eucalyptus and Pinus showed a significant reduction in arabinose, manose, galactose and xylose contents when submitted to increasing temperatures. No significant alteration in glucose content was observed. Lignin content, however, increased during the heat process. There was a significant reduction in extractive content for Eucalyptus. On the other hand, a slight increase in extractive content has been determined for the Pinus wood. and that only for the highest temperature. These different behaviors can be explained by differences in chemical constituents between softwoods and hardwoods. The results obtained in this study provide important information for future research and utilization of thermally modified wood. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Sensory analysis is one of the most suitable processes for measuring oxidative damage and determining the shelf-life of nuts, but it is an expensive and time-consuming methodology. Thus, our objective was to correlate sensory data and chemical markers obtained during the accelerated oxidation of Brazil nuts and to determine the chemical parameters values associated with the sensory shelf-life of the nuts as established by the consumers. Brazil nuts were kept at 80 A degrees C for 21 days. At intervals of 2 days, the oxidized odor of the samples was analyzed by nine trained panelists using a discriminative scale, and the oil was extracted to quantify the chemical parameters. A high (r > 0.95) and significant correlation (p < 0.05) was observed between the sensory data and the hydroperoxide concentration (PV), para-anisidine value (pAV), hexanal content, and alpha- and gamma-tocopherol concentrations. When compared with fresh samples, sensory identification of oxidized odor occurred on the 4th day, noticeably earlier than changes in chemical markers (12th day). Consumers rejected the nuts after 12 days of storage, which corresponded to PV = 18.8 meq kg(-1) oil, pAV = 7.68, hexanal = 48.95 mu mol 100 g(-1) oil, alpha-tocopherol = 15.01 mg kg(-1) oil, and gamma + beta-tocopherol = 73.88 mg kg(-1) oil. Our study suggests that simple spectrometric methods, such as PV and pAV, can be used to estimate the oxidative shelf-life of nuts based on sensory analysis.
Resumo:
Pectin can be used as a natural emulsifier in food formulations. In this study, textured soybean protein (TSP), used as an emulsifier in commercial sausages, was partially replaced by a mixture containing pectin and isolated soybean proteins, which were either extruded (EXT) or not extruded (MIX), and the chemical and sensory characteristics of samples were evaluated after 60 days of storage at 4 degrees C. Responses such as oxidation measured by PV and TBARS, hardness, color, pH and sensory characteristics were compared with those of a commercial sausage (CON). The mixture containing highly methyl-esterified pectin, textured soybean proteins and isolated soybean proteins, as emulsifier agent, reduced the hardness (EXT: 21.69 +/- 0.98 and MIX: 20.17 +/- 2.76 N) and the pH (EXT: 5.46 +/- 0.03 and MIX: 5.29 +/- 0.01) of the samples and increased the concentration of peroxides (EXT: 0.10 +/- 0.01 and MIX: 0.15 +/- 0.01 meq/kg) when compared with samples formulated only with TSP (28.57 +/- 2.54 N, pH of 6.92 +/- 0.04 and PV = 0.07 +/- 0.01 meq/kg). These effects were likely caused by the anionic character of the emulsifier. However, no sensory difference was observed between the sausages containing highly methyl-esterified pectin, textured soybean proteins and isolated soybean proteins submitted to the extrusion process (EXT) and the control sausages, suggesting that the formulation proposed in this study can be a potential alternative for the further development of sausages that have functional properties or are free of artificial additives.
Resumo:
Foods provide essential and bioactive compounds with health-promoting properties such as antioxidant, anti-inflammatory, and hypocholesterolemic activities, which have been related to vitamins A, C, and E and phenolic compounds such as flavonoids. Therefore, the aim of this work was to identify potential sources of bioactive compounds through the determination of flavonoids and ellagic acid contents and the in vitro antioxidant capacity and alpha-glucosidase and alpha-amylase inhibitory activities of Brazilian native fruits and commercial frozen pulps. Camu-camu, cambuci, uxi, and tucuma and commercial frozen pulps of cambuci, cagaita, coquinho azedo, and araca presented the highest antioxidant capacities. Cambuci and cagaita exhibited the highest alpha-glucosidase and alpha-amylase inhibitory activities. Quercetin and kaempferol derivatives were the main flavonoids present in most of the samples. Ellagic acid was detected only in umbu, camu-camu, cagaita, araca, and cambuci. According to the results, native Brazilian fruits can be considered as excellent sources of bioactive compounds.
Resumo:
Banana flour obtained from unripe banana (Musa acuminata, var. Nanico) under specific drying conditions was evaluated regarding its chemical composition and nutritional value. Results are expressed in dry weight (dw). The unripe banana flour (UBF) presented a high amount of total dietary fiber (DF) (56.24 g/100 g), which consisted of resistant starch (RS) (48.99 g/100 g), fructans (0.05 g/100 g) and DF without RS or fructans (7.2 g/100 g). The contents of available starch (AS) (27.78 g/100 g) and soluble sugars (1.81 g/100 g) were low. The main phytosterols found were campesterol (4.1 mg/100 g), stigmasterol (2.5 mg/100 g) and beta-sitosterol (6.2 mg/100 g). The total polyphenol content was 50.65 mg GAE/100 g. Antioxidant activity, by the FRAP and ORAC methods, was moderated, being 358.67 and 261.00 mu mol of Trolox equivalent/100 g, respectively. The content of Zn, Ca and Fe and mineral dialyzability were low. The procedure used to obtain UBF resulted in the recovery of undamaged starch granules and in a low-energy product (597 kJ/100 g).
Resumo:
The starch of maca (Lepidium meyenii Walpers) presented oval and irregular morphology, with granule size between 7.4 and 14.9 mu m in length and 5.8 and 9.3 mu m in diameter. The isolated starch showed the following features: purity of 87.8%, with 0.28% lipids, 0.2% fibre and 0.12% fixed mineral residue, and no protein detected; the ratio between the amylose and amylopectin contents were 20:80: the solubility at 90 degrees C was 61.4%, the swelling power was 119.0g water/g starch and the water absorption capacity was 45.9 g water/g starch; the gel turbidity rose 44% during the storing time; the gelatinization temperature was 47.7 degrees C and the transition enthalpy 6.22 J/g; the maximum viscosity reached 1260 UB at 46.4 degrees C, with breakdown, setback and consistence of 850, 440 and -410 UB, respectively. The low gelling temperature and the stability during gel refrigeration could be adequate for foods requiring moderate temperature process, but not for frozen food. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The effect of addition of rosemary and oregano extracts on the sensory quality of irradiated beef burger was investigated. Batches of beef burgers were prepared with 400 ppm of rosemary or oregano extract and a group prepared with 200 ppm of synthetic butyl-hydroxytoluene (BHT)/butyl-hydroxy-anisol (BHA) was used as a control. Half of each formulation was irradiated at the maximum dose allowed for frozen meat (7 kGy). Samples were kept under frozen conditions (-20 degrees C) during the whole storage period, including during irradiation. Two analyses were performed after 20 and 90 days to verify the influence of the addition of the different types of antioxidants and the effect of irradiation and storage time on the acceptance of the product. Thirty-three and thirty-four untrained panelists were invited to participate in the first and second test, respectively. A structured hedonic scale ranging from 1 to 9 points was used in both analyses. BHT/BHA formulation obtained the highest score (6.73) and regarding the natural antioxidants, oregano received better acceptance (6.36). Irradiated samples formulated with oregano received a lower score, 6.03 in the first test and 5.06 in the second one, compared to the non-irradiated sample (6.36 and 5.79). In the second test (90 days), the sample formulated with BHT/BHA and which was irradiated received a higher score (6.59) when compared to the non-irradiated one (5.85). In both tests, the irradiated samples formulated with rosemary extract obtained a better score compared to the non-irradiated one, the scores being 5.00-3.82 and 5.00-3.76 in the first and second test, respectively. Our results allowed us to conclude that the natural antioxidants, rosemary and oregano extracts, present a good alternative for replacing synthetic additives in food industries, and that the irradiation process, in some cases, may help to enhance the sensory quality of food. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Samples of fruit from the jussara palm plant (Euterpe edulis), collected in different regions of the state of Santa Catarina. Brazil, were analyzed for chemical composition. phenolic acids. anthocyanins, flavonoids and fatty acids profile. Results indicated that the jussara fruit has a high lipid content (18.45-44.08%), oleic acid (44.17-55.61%) and linoleic acid (18.19-25.36%) are the fatty acids found in the highest proportion, and other components were proteins (5.13-8.21%). ash (1.55-3.32%) and moisture (34.95-42.47%). Significant differences were found in the total phenolic, total monomeric anthocyanins and other flavonoids for the samples from the five cultivation regions. The fruit from region E harvested in summer, with high temperatures and medium altitudes, had the highest contents of total phenolics (2610.86 +/- 3.89 mg 100 g(-1) GAE) and monomeric anthocyanins (1080.54 +/- 2.33 mg 100g(-1) cy-3-glu). The phenolic compound included ferulic, gallic, hydroxybenzoic and p-coumaric acids, as well as catechin, epicatechin and quercetin. The results show promising perspectives for the exploitation of this tropical fruit with a chemical composition comprising considerable phenolic acids and flavonoids compounds and showing activity antioxidant. (C) 2010 Published by Elsevier Ltd.
Resumo:
Strawberries are one of the most popular edible fruits in Brazil and their consumption has increased with the development of new varieties available at almost all seasons. Fruit of seven full-ripened strawberry cultivars (Dover, Camp Dover, Camarosa, Sweet Charlie, Toyonoka, Oso Grande and Piedade) were characterized in relation to the total phenolics, vitamin C, flavonoids, free and total ellagic acid contents and antioxidant capacity. Camp Dover had the lowest values for anthocyanins and total phenolics but the highest total flavonoid content. Dover presented the highest anthocyanin, total phenolics and ellagic acid contents and also elevated antioxidant capacity. The best conditions for the determination of the total ellagic acid content in strawberries were also optimized and the results showed that the extraction with 80% acetone, and hydrolysis using 2 N TFA at 120 degrees C for 60 min allowed a 99% recovery. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This study describes an accurate, sensitive, and specific chromatographic method for the simultaneous quantitative determination of lamivudine and zidovudine in human blood plasma, using stavudine as an internal standard. The chromatographic separation was performed using a C8 column (150 x 4.6 mm, 5 mu m), and ultraviolet absorbency detection at 270 nm with gradient elution. Two mobile phases were used. Phase A contained 10 mM potassium phosphate and 3% acetonitrile, whereas Phase B contained methanol. A linear gradient was used with a variability of A-B phase proportion from 98-2% to 72-28%, respectively. The drug extraction was performed with two 4 mL aliquots of ethyl acetate.
Resumo:
Focusing on the therapeutic and cosmetic potentials of the thermal water, several processes were developed to achieve a raw material known as fango which presents in its constitution water, clay and organic soil. This research work aimed at characterizing turf, sulphur mud and fango from Araxa, MG, Brazil, through physical, physicochemical, inorganic and organic assessments for cosmetic and topical product proposes. The characterization permitted the determination of relevant parameters to suggest the efficacy (presence, of ions) and safety (absence of toxic metals) of those raw materials for cosmetic and pharmaceutical utilization.
Resumo:
The influence of four variables, specifically PEG molar mass (400, 1,000, and 8,000 g/mol), concentrations of PEG and phosphate salts (15, 20, and 25% for both), and agitation intensity (110, 150, and 200 rpm), on clavulanic acid (CA) extraction by extractive fermentation with PEG/phosphate salts aqueous two-phase system was investigated in shaken flasks using a 2(4-1)-fractional factorial design. After selection of the two most significant variables (agitation intensity and PEG molar mass), an optimization study conducted according to a 2(2)-central composite design revealed that 25% PEG 8,000 g/mol and phosphate salts at 240 rpm (run 6) were the best conditions for the extractive fermentation, leading to the best results in terms of partition coefficient (k = 8.2), yield of CA in the PEG-rich phase (eta(T) = 93%) and productivity (P = 5.3 mg/Lh). As a first attempt to make a scale-up of these results, the effectiveness of the extractive fermentation was then checked in a bench-scale bioreactor under conditions as close as possible to the optimum ones determined in flasks. The highest CA concentration obtained in the PEG-rich phase (691 mg/L) was 30% higher than in flasks, thus demonstrating the potential of such a new process, integrating the production and extraction steps, as a promising, low-cost tool to obtain high yields of this and similar products. (C) 2010 American Institute of Chemical Engineers Biotechnol. Prog., 27: 95-103, 2011