953 resultados para Charmonium suppression
Resumo:
Nematodes of the Meloidogyne genus affect to most of crops of an economic importance in Argentina. Researches related to new control strategies are needed to reduce the damage produced by these organisms. The objective of this work was to compare the effects of Galleria mellonella cadavers infected with the Argentine isolates Heterorhabditis bacteriophora Rama Caída and Steinernema rarum NOE, cadaver macerates and dead infective juveniles (IJs) on M. javanica suppression. Experiments were performed using 24-well plates and pepper plants grown in a growth chamber. The entomopathogenic nematodes-infected G. mellonella cadavers, their cadaver macerates and dead IJs were effective in suppressing M. javanica second-stage juveniles under laboratory conditions. The use of H. bacteriophora-infected cadavers caused a significant decrease in the number of galls and egg masses on pepper plants parasitized by M. javanica, in a growth-chamber.
Resumo:
The ant Oecophylla longinoda Latreille forms a trophobiotic relationship with the invasive mealybug Rastrococus iceryoides Green and promotes the latter's infestations to unacceptable levels in the presence of their natural enemies. In this regard, the antagonistic interactions between the ant and the parasitoid Anagyrus pseudococci Girault were assessed under laboratory conditions. The percentage of parasitism of R. iceryoides by A. pseudococci was significantly higher on "ant-excluded" treatments (86.6% ± 1.27%) compared to "ant-tended" treatments (51.4% ± 4.13%). The low female-biased sex-ratio observed in the "ant-tended" treatment can be attributed to ants' interference during the oviposition phase, which disrupted parasitoids' ability to fertilize eggs. The mean foraging time, host handling time and number of successful oviposition in "ant-excluded" treatment were significantly higher compared to "ant-tended" treatments. When ant workers were allowed access to sterilized sand grains, mummified and unmummified R. iceryoides, they selectively removed the mummified mealybugs, indicating that they recognized the mummies as potential foods (1.2 ± 0.46 to 7.8 ± 1.17 mummies at 10 min intervals for 2 h). Percentage emergence from mummified R. iceryoides removed by the ants was significantly lower compared to emergence from mummies not exposed to ants. Although, host seeking parasitoids frequently evaded attacks, some were killed by the foraging ant workers (2.0 ± 0.38 to 6.0 ± 0.88 at 10 min intervals for 2 h). These results suggest for the first time that the presence of O. longinoda has a detrimental effect on the abundance, reproductive success and possibly oviposition strategy of female parasitoids, which might be a delimiting factor in field conditions if both natural enemies are to be recommended for use within the same agro-ecosystem.
Resumo:
Nanofabrication has allowed the development of new concepts such as magnetic logic and race-track memory, both of which are based on the displacement of magnetic domain walls on magnetic nanostripes. One of the issues that has to be solved before devices can meet the market demands is the stochastic behaviour of the domain wall movement in magnetic nanostripes. Here we show that the stochastic nature of the domain wall motion in permalloy nanostripes can be suppressed at very low fields (0.6-2.7 Oe). We also find different field regimes for this stochastic motion that match well with the domain wall propagation modes. The highest pinning probability is found around the precessional mode and, interestingly, it does not depend on the external field in this regime. These results constitute an experimental evidence of the intrinsic nature of the stochastic pinning of domain walls in soft magnetic nanostripes
Resumo:
This paper presents a reflection suppression technique for far field antenna measurements. The technique is based on a source reconstruction over a surface greater than the antenna itself. To be able to perform the reflection construction the next steps are required: the complete far field antenna pattern is obtained through interpolation of the acquired cuts, the currents are obtained through a holographic technique, the field out of the antenna area is filtered, and the pattern is reconstructed. The algorithm is used with measurements in the LEHA-UPM antenna measurement facilities and in the outdoor far field facility of LIT INPE in Brazil.
Resumo:
This paper presents the analysis of the reflections in two kind of spherical far field ranges: one if the classical acquisition where the AUT is rotated and the second one corresponds to the systems where the AUT is fixed and the antenna probe is rotated. In large far field systems this is not possible, but this can be used to the measurement of small antennas, for instance, with the SATIMO StarGate system. In both cases, it is assumed that only one frequency is acquired and the results should be improved cut by cut, in order not to lose the advantages or far field measurements. Finally, some practical results are studied using measurements of one antenna in the outdoor far field facility of LIT INPE in Brazil.
Resumo:
A serpin was identified in normal mammary gland by differential cDNA sequencing. In situ hybridization has detected this serpin exclusively in the myoepithelial cells on the normal and noninvasive mammary epithelial side of the basement membrane and thus was named myoepithelium-derived serine proteinase inhibitor (MEPI). No MEPI expression was detected in the malignant breast carcinomas. MEPI encodes a 405-aa precursor, including an 18-residue secretion signal with a calculated molecular mass of 46 kDa. The predicted sequence of the new protein shares 33% sequence identity and 58% sequence similarity to plasminogen activator inhibitor (PAI)-1 and PAI-2. To determine whether MEPI can modulate the in vivo growth and progression of human breast cancers, we transfected a full-length MEPI cDNA into human breast cancer cells and studied the orthotopic growth of MEPI-transfected vs. control clones in the mammary fat pad of athymic nude mice. Overexpression of MEPI inhibited the invasion of the cells in the in vitro invasion assay. When injected orthotopically into nude mice, the primary tumor volumes, axillary lymph node metastasis, and lung metastasis were significantly inhibited in MEPI-transfected clones as compared with controls. The expression of MEPI in myoepithelial cells may prevent breast cancer malignant progression leading to metastasis.
Resumo:
Alterations in pathways mediated by retinoblastoma susceptibility gene (RB) product are among the most common in human cancer. Mice with a single copy of the Rb gene are shown to develop a syndrome of multiple neuroendocrine neoplasia. The earliest Rb-deficient atypical cells were identified in the intermediate and anterior lobes of the pituitary, the thyroid and parathyroid glands, and the adrenal medulla within the first 3 months of postnatal development. These cells form gross tumors with various degrees of malignancy by postnatal day 350. By age of 380 days, 84% of Rb+/− mice exhibited lung metastases from C-cell thyroid carcinomas. Expression of a human RB transgene in the Rb+/− mice suppressed carcinogenesis in all tissues studied. Of particular clinical relevance, the frequency of lung metastases also was reduced to 12% in Rb+/− mice by repeated i.v. administration of lipid-entrapped, polycation-condensed RB complementary DNA. Thus, in spite of long latency periods during which secondary alterations can accumulate, the initial loss of Rb function remains essential for tumor progression in multiple types of neuroendocrine cells. Restoration of RB function in humans may prove an effective general approach to the treatment of RB-deficient disseminated tumors.
Resumo:
Overexpression of wild-type p53 in M1 myeloid leukemia cells induces apoptotic cell death that was suppressed by the calcium ionophore A23187 and the calcium ATPase inhibitor thapsigargin (TG). This suppression of apoptosis by A23187 or TG was associated with suppression of caspase activation but not with suppression of wild-type-p53-induced expression of WAF-1, mdm-2, or FAS. In contrast to suppression of apoptosis by the cytokines interleukin 6 (IL-6) and interferon γ, a protease inhibitor, or an antioxidant, suppression of apoptosis by A23187 or TG required extracellular Ca2+ and was specifically abolished by the calcineurin inhibitor cyclosporin A. IL-6 induced immediate early activation of junB and zif/268 (Egr-1) but A23187 and TG did not. A23187 and TG also suppressed induction of apoptosis by doxorubicin or vincristine in M1 cells that did not express p53 by a cyclosporin A-sensitive mechanism. Suppression of apoptosis by A23187 or TG was not associated with autocrine production of IL-6. Apoptosis induced in IL-6-primed M1 cells after IL-6 withdrawal was not suppressed by A23187 or TG but was suppressed by the cytokines IL-6, IL-3, or interferon γ. The results indicate that these Ca2+-mobilizing compounds can suppress some pathways of apoptosis suppressed by cytokines but do so by a different mechanism.
Resumo:
Yeast phosphatidylinositol transfer protein (Sec14p) function is essential for production of Golgi-derived secretory vesicles, and this requirement is bypassed by mutations in at least seven genes. Analyses of such ‘bypass Sec14p’ mutants suggest that Sec14p acts to maintain an essential Golgi membrane diacylglycerol (DAG) pool that somehow acts to promote Golgi secretory function. SPO14 encodes the sole yeast phosphatidylinositol-4,5-bisphosphate-activated phospholipase D (PLD). PLD function, while essential for meiosis, is dispensable for vegetative growth. Herein, we report specific physiological circumstances under which an unanticipated requirement for PLD activity in yeast vegetative Golgi secretory function is revealed. This PLD involvement is essential in ‘bypass Sec14p’ mutants where normally Sec14p-dependent Golgi secretory reactions are occurring in a Sec14p-independent manner. PLD catalytic activity is necessary but not sufficient for ‘bypass Sec14p’, and yeast operating under ‘bypass Sec14p’ conditions are ethanol-sensitive. These data suggest that PLD supports ‘bypass Sec14p’ by generating a phosphatidic acid pool that is somehow utilized in supporting yeast Golgi secretory function.
Resumo:
The Saccharomyces cerevisiae genome encodes four MutL homologs. Of these, MLH1 and PMS1 are known to act in the MSH2-dependent pathway that repairs DNA mismatches. We have investigated the role of MLH3 in mismatch repair. Mutations in MLH3 increased the rate of reversion of the hom3–10 allele by increasing the rate of deletion of a single T in a run of 7 Ts. Combination of mutations in MLH3 and MSH6 caused a synergistic increase in the hom3–10 reversion rate, whereas the hom3–10 reversion rate in an mlh3 msh3 double mutant was the same as in the respective single mutants. Similar results were observed when the accumulation of mutations at frameshift hot spots in the LYS2 gene was analyzed, although mutation of MLH3 did not cause the same extent of affect at every LYS2 frameshift hot spot. MLH3 interacted with MLH1 in a two-hybrid system. These data are consistent with the idea that a proportion of the repair of specific insertion/deletion mispairs by the MSH3-dependent mismatch repair pathway uses a heterodimeric MLH1-MLH3 complex in place of the MLH1-PMS1 complex.
Resumo:
The mahogany (mg) locus originally was identified as a recessive suppressor of agouti, a locus encoding a skin peptide that modifies coat color by antagonizing the melanocyte-stimulating hormone receptor or MC1-R. Certain dominant alleles of agouti cause an obesity syndrome when ectopic expression of the peptide aberrantly antagonizes the MC4-R, a related melanocyte-stimulating hormone receptor expressed in hypothalamic circuitry and involved in the regulation of feeding behavior and metabolism. Recent work has demonstrated that mg, when homozygous, blocks not only the ability of agouti to induce a yellow coat color when expressed in the skin of the lethal yellow mouse (AY), but also the obesity resulting from ectopic expression of agouti in the brain. Detailed analysis of mg/mg AY/a animals, presented here, demonstrates that mg/mg blocks the obesity, hyperinsulinemia, and increased linear growth induced by ectopic expression of the agouti peptide. Remarkably, however, mg/mg did not reduce hyperphagia in the AY/a mouse. Furthermore, mg/mg induced hyperphagia and an increase in basal metabolic rate in the C57BL/6J mouse in the absence of AY. Consequently, although mahogany is broadly required for agouti peptide action, it also appears to be involved in the control of metabolic rate and feeding behavior independent of its suppression of agouti.
Resumo:
We have determined the treadmilling rate of brain microtubules (MTs) free of MT-associated proteins (MAPs) at polymer mass steady state in vitro by using [3H]GTP-exchange. We developed buffer conditions that suppressed dynamic instability behavior by ≈10-fold to minimize the contribution of dynamic instability to total tubulin-GTP exchange. The MTs treadmilled rapidly under the suppressed dynamic instability conditions, at a minimum rate of 0.2 μm/min. Thus, rapid treadmilling is an intrinsic property of MAP-free MTs. Further, we show that tau, an axonal stabilizing MAP involved in Alzheimer’s disease, strongly suppresses the treadmilling rate. These results indicate that tau’s function in axons might involve suppression of axonal MT treadmilling. We describe mathematically how treadmilling and dynamic instability are mechanistically distinct MT behaviors. Finally, we present a model that explains how small changes in the critical tubulin subunit concentration at MT minus ends, caused by intrinsic differences in rate constants or regulatory proteins, could produce large changes in the treadmilling rate.
Resumo:
Experimental autoimmune encephalomyelitis (EAE) induced with myelin proteolipid protein (PLP) residues 139–151 (HSLGKWLGHPDKF) can be prevented by treatment with a T cell receptor (TCR) antagonist peptide (L144/R147) generated by substituting at the two principal TCR contact residues in the encephalitogenic peptide. The TCR antagonist peptide blocks activation of encephalitogenic Th1 helper cells in vitro, but the mechanisms by which the antagonist peptide blocks EAE in vivo are not clear. Immunization with L144/R147 did not inhibit generation of PLP-(139–151)-specific T cells in vivo. Furthermore, preimmunization with L144/R147 protected mice from EAE induced with the encephalitogenic peptides PLP-(178–191) and myelin oligodendrocyte protein (MOG) residues 92–106 and with mouse myelin basic protein (MBP). These data suggest that the L144/R147 peptide does not act as an antagonist in vivo but mediates bystander suppression, probably by the generation of regulatory T cells. To confirm this we generated T cell lines and clones from animals immunized with PLP-(139–151) plus L144/R147. T cells specific for L144/R147 peptide were crossreactive with the native PLP-(139–151) peptide, produced Th2/Th0 cytokines, and suppressed EAE upon adoptive transfer. These studies demonstrate that TCR antagonist peptides may have multiple biological effects in vivo. One of the principal mechanisms by which these peptides inhibit autoimmunity is by the induction of regulatory T cells, leading to bystander suppression of EAE. These results have important implications for the treatment of autoimmune diseases where there are autopathogenic responses to multiple antigens in the target organ.
Cytokine suppression of protease activation in wild-type p53-dependent and p53-independent apoptosis
Resumo:
M1 myeloid leukemic cells overexpressing wild-type p53 undergo apoptosis. This apoptosis can be suppressed by some cytokines, protease inhibitors, and antioxidants. We now show that induction of apoptosis by overexpressing wild-type p53 is associated with activation of interleukin-1β-converting enzyme (ICE)-like proteases, resulting in cleavage of poly(ADP- ribose) polymerase and the proenzyme of the ICE-like protease Nedd-2. Activation of these proteases and apoptosis were suppressed by the cytokine interleukin 6 or by a combination of the cytokine interferon γ and the antioxidant butylated hydroxyanisole, and activation of poly(ADP-ribose) polymerase and apoptosis were suppressed by some protease inhibitors. In a clone of M1 cells that did not express p53, vincristine or doxorubicin induced protease activation and apoptosis that were not suppressed by protease inhibitors, but were suppressed by interleukin 6. In another myeloid leukemia (7-M12) doxorubicin also induced protease activation and apoptosis that were not suppressed by protease inhibitors, but were suppressed by granulocyte–macrophage colony-stimulating factor. The results indicate that (i) overexpression of wild-type p53 by itself or treatment with cytotoxic compounds in wild-type p53-expressing or p53-nonexpressing myeloid leukemic cells is associated with activation of ICE-like proteases; (ii) cytokines exert apoptosis-suppressing functions upstream of protease activation; (iii) the cytotoxic compounds induce additional pathways in apoptosis; and (iv) cytokines can also suppress these other components of the apoptotic machinery.
Resumo:
Primary CD8+ T cells from HIV+ asymptomatics can suppress virus production from CD4+ T cells acutely infected with either non-syncytia-inducing (NSI) or syncytia-inducing (SI) HIV-1 isolates. NSI strains of HIV-1 predominantly use the CCR5 chemokine receptor as a fusion cofactor, whereas fusion of T cell line-adapted SI isolates is mediated by another chemokine receptor, CXCR4. The CCR5 ligands RANTES (regulated on activation, normal T cell expressed and secreted), macrophage inflammatory protein 1α (MIP-1α), and MIP-1β are HIV-1 suppressive factors secreted by CD8+ cells that inhibit NSI viruses. Recently, the CXC chemokine stromal cell-derived factor 1 (SDF-1) was identified as a ligand for CXCR4 and shown to inhibit SI strains. We speculated that SDF-1 might be an effector molecule for CD8+ suppression of SI isolates and assessed several SDF-1 preparations for inhibition of HIV-1LAI-mediated cell–cell fusion, and examined levels of SDF-1 transcripts in CD8+ T cells. SDF-1 fusion inhibitory activity correlated with the N terminus, and the α and β forms of SDF-1 exhibited equivalent fusion blocking activity. SDF-1 preparations having the N terminus described by Bleul et al. (Bleul, C.C., Fuhlbrigge, R.C., Casasnovas, J.M., Aiuti, A. & Springer, T.A. (1996) J. Exp. Med. 184, 1101–1109) readily blocked HIV-1LAI-mediated fusion, whereas forms containing two or three additional N-terminal amino acids lacked this activity despite their ability to bind and/or signal through CXCR4. Though SDF-1 is constitutively expressed in most tissues, CD8 T cells contained extremely low levels of SDF-1 mRNA transcripts (<1 transcript/5,000 cells), and these levels did not correlate with virus suppressive activity. We conclude that suppression of SI strains of HIV-1 by CD8+ T cells is unlikely to involve SDF-1.