956 resultados para Cerium oxides
Resumo:
The extraction behavior of Ce(IV) along with Th(IV) and Ln(III) (Ln = Ce, Gd, Yb) nitrate by pure ionic liquid, [C(8)mim]PF6, was investigated. [C(8)mim]PF6 alone showed good extraction ability for Ce(IV), while it was slight for Th(IV) and negligible for Ln(III). The extraction behavior of Ce(IV) by [C(8)mim]PF6 was particularly studied, and the most probable extraction mechanism proposed was the anion exchange mechanism. Moreover, the stripping of Ce(IV) from IL phase was also investigated. The Ce(IV) in IL phase can be quantitatively recovered by water.
Resumo:
Catalytic NO decomposition on LaSrMn1-x Ni (x) O4+delta (0 a parts per thousand currency sign x a parts per thousand currency sign 1) is investigated. The activity of NO decomposition increases dramatically after the substitution of Ni for Mn, but decreases when Mn is completely replaced by Ni (x = 1.0). The optimum value is at x = 0.8. These indicate that the catalytic performance of the samples is contributed by the synergistic effect of Mn and Ni. O-2-TPD and H-2-TPR experiments are carried out to explain the change of activity. The former indicates that only when oxygen vacancy is created, could the catalyst show enhanced activity for NO decomposition; the latter suggests that the best activity is obtained from catalyst with the most matched redox potentials (in this work, the biggest Delta T and Delta E values).
Resumo:
Mass spectrometry is not able to differentiate NOx and N2 from other interferences (e.g. CO and C2H4) in the deNOx reactions. In the present study, a quantitative method for analysis of NOx and N2 simultaneously in these reactions with an assisted converter operated at higher temperature under O2-rich condition, which eliminates the interferences, is developed. The NOx conversion from this method is comparable to the one from an Automotive Emission Analyser equipped with NOx electrochemical sensor. Two types of deNOx reactions are tested in terms of selectivity of N2 production. The application of this method is discussed.
Resumo:
convenient and efficient synthesis of spiro-fused pyrazolin-5-one N-oxides starting from readily available 1-carbamoyl-1-oximylcycloalkanes is developed. This general protocol features a novel and facile way for access to the five-membered azaheterocycles by formation of a new N-N single bond. The key cyclization step utilizes the formation of an N-oxonitrenium intermediate, mediated by the hypervalent iodine reagent PIFA, and its subsequent intramolecular trapping by the amide moiety under rather mild experimental conditions.
Resumo:
Lanthanum-zirconium-cerium composite oxide (La-2(Zr0.7Ce0.3)(2)O-7, LZ7C3) as a candidate material for thermal barrier coatings (TBCs) was prepared by electron beam-physical vapor deposition (EB-PVD). The composition, crystal structure, thermophysical properties, surface and cross-sectional morphologies and cyclic oxidation behavior of the LZ7C3 coating were studied. The results indicated that LZ7C3 has a high phase stability between 298 K and 1573 K, and its linear thermal expansion coefficient (TEC) is similar to that of zirconia containing 8 wt% yttria (8YSZ). The thermal conductivity of LZ7C3 is 0.87 W m(-1) K-1 at 1273 K, which is almost 60% lower than that of 8YSZ. The deviation of coating composition from the ingot can be overcome by the addition of excess CeO2 and ZrO2 during ingot preparation or by adjusting the process parameters.
Resumo:
BACKGROUND: Ionic liquids (ILs) as environmentally benign solvents have been widely studied in the application of solvent extraction. However, few applications have been successfully industrialized because of the difficult stripping of metal ions or the loss of components of the ILs. More work needs to be done to investigate the extraction behaviour of IL-based extraction systems. In this work, the extraction behaviour of Ce(IV), Th(IV) and some trivalent rare earth (RE) nitrates by di(2-ethylhexyl) 2-ethylhexylphosphonate (DEHEHP) in the IL, 1-methyl-3-octylimidazolium hexafluorophosphate ([C(8)mim]PF6), was investigated and compared with that in the n-heptane system. In particular, the effect of F(I) on the extraction mechanism for Ce(IV) and its separation from Th(IV) was investigated. Otherwise, the recovery efficiency of Ce(IV) and F(I) from a practical bastnasite leach liquor was examined using IL based extraction.
Resumo:
Die-cast Mg-4Al-4RE-0.4Mn (RE = Ce-rich mischmetal) and Mg-4Al-4La-0.4Mn magnesium alloys were prepared successfully and their microstructure, tensile and creep properties have been investigated. The results show that two binary Al-RE phases, Al11RE3 and Al2RE, are formed along grain boundaries in Mg-4Al-4RE-0.4Mn alloy, while the phase compositions of Mg-4Al-4La-0.4Mn alloy mainly consist of alpha-Mg phase and Al11La3 phase. And in Mg-4Al-4La-0.4Mn alloy the Al11La3 phase occupies a large grain boundary area and grows with complicated morphologies, which is characterized by scanning electron microscopy in detail. Changing the rare earth content of the alloy from Ce-rich mischmetal to lanthanum gives a further improvement in the tensile and creep properties, and the later could be attributed to the better thermal stability of Al11La3 phase in Mg-4Al-4La-0.4Mn alloy than that of Al11RE3 phase in Mg-4Al-4RE-0.4Mn alloy.
Resumo:
Mg-20Zn-8Al-xCe(x=0-2 wt.%) alloys were prepared by metal mould casting method, the effects of Ce on the microstructure and mechanical properties of the alloys were investigated. The results showed that the dendrite as well as gram size were refined by the addition of Ce, and the best refinement was obtained in 1.39% Ce containing alloy. The main phases in the as cast alloys were alpha-Mg and tau-Mg-32 (Al, Zn)(49), and Al4Ce phase was found in the alloys contained more than 1.39% Ce. The addition of Ce improved the mechanical properties of the alloys. The strengthening mechanism was attributed to grain refinement and compound reinforced.
Resumo:
A new material (IL923SGs) composed of ionic liquids and trialkyl phosphine oxides (Cyanex 923) for Y(III) uptake was prepared via a sol-gel method. The hydrophobic ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate (C(8)mim(+)PF(6)-) was used as solvent medium and pore templating material. The extraction of Y(III) by IL923SGs was mainly due to the complexation of metal ions with Cyanex 923 doped in the solid silica. Ionic liquid was stably doped into the silica gel matrix providing a diffusion medium for Cyanex 923, and this will result in higher removal efficiencies and excellent stability for metal ions separation. IL923SGs were also easily regenerated and reused in the subsequent removal of Y(III) in four cycles.
Resumo:
The linear thermal expansion coefficients of ABO(4) compounds are determined and the expansion tendency is analyzed from the chemical bond viewpoint. All chemical bonds contributions are involved. The contributions from different chemical bonds are compared with each other and the origin of the expansion behavior of ABO(4) oxides is revealed that the A-O bonds expansions dominate the compound expansion. The calculated expansion coefficients agree satisfactorily with the experimental data. By analyzing the expansion regularity the range of the expansion coefficients can be qualified. The thermal expansion coefficients of some ABO(4) compounds having not been measured are predicted and discussed.
Resumo:
Active site structure for NO decomposition carried out on perovskite-like oxides were discussed based on the N-2 yield measured from LaSrNi1-x,AlxO4 with different B-site cations and from La2-ySryCuO4 with different crystal phases. Results show that the active site contains two oxygen vacancies, two transition metals, and one lattice-oxygen, with the oxygen vacancy locating on the apex of MO6 octahedron, and the lattice oxygen locating between the two transition metals (i.e., M-O-M plane). Density functional theory (DFT) analysis to the structure shows that this new active site is the most active structure for NO adsorbing, and hence, for NO decomposition. The similar trend of the relative energies that are required for the formation of oxygen vacancies with f form (calculated from DFT), the amount of oxygen vacancies, and the activities (N-2 yield) certifies this result further.
Resumo:
Effect of cerium on the microstructure and electrochemical performance of the Ti0.25V0.35-xCexCr0.1Ni0.3 (x = 0, 0.005) electrode alloy was investigated by X-ray diffraction (XRD), field emission scanning electron microscopy/energy dispersive X-ray spectrometry (FESEM-EDS), and electrochemical impedance spectroscopy (EIS) measurements. On the basis of XRD and FESEM-EDS analysis, the alloy was mainly composed of V-based solid solution with body-centered-cubic structure and TiNi-based secondary phase. Ce did not exist in two phases, instead, it existed as Ce-rich small white particles, with irregular edges, distributed near the grain boundaries of the V-based solid solution phase. Discharge capacity, cycle stability, and high-rate discharge ability of the alloy electrode were effectively improved with the addition of Ce at 293 K. It was very surprising that the charge retention was abnormal with larger discharge capacity after standing at the open circuit for 24 h. EIS indicated that addition of Ce improved the dynamic performance, which caused the charge transfer resistance (R-T) to decrease and exchange current density (I-0) to increase markedly. The exchange current density of the electrochemical reaction on the alloy surface with Ce addition was about 2.07 and 3.10 times larger than that of the alloy without Ce at 303 and 343 K, respectively.
Resumo:
BACKGROUND: Thermodynamic studies on Ce(IV) extraction with primary amine N1923 demonstrate that primary amine N1923 is an excellent extractant for separation of Ce(IV) from Re(III). In order to clarify the mechanism of extraction and to optimize the parameters in practical extraction systems used in the rare earth industry, the extraction kinetics was investigated using a constant interfacial area cell with laminar flow in the present work.RESULTS: The data indicate that the rate constant (k(ao).) becomes constant when stirring speed exceeds 250 rpm. The apparent forward extraction rate is calculated to be 10(-1.70). The activation energy (E.) was calculated to be 20.5 kJ/mol from the slope of log kao against 1000/T. The minimum bulk concentration of the extractant necessary to saturate the interface (C-min) is lower than 10(-5) mol L-1.CONCLUSION: Studies of interfacial tension and the effects of stirring rate and specific interfacial area on the extraction rate show that the extraction rate is kinetically controlled, and a mass transfer model has been proposed. The rate equation has been obtained as: -d[Ce(IV)]/dt = 10(-1.70)[Ce(IV)] [(RNH3)(2)SO4](1.376). The rate-controlling step has been evaluated from analysis of the experimental results.
Resumo:
In this work, studies were carried out on the extraction properties of Mn(II) and MnO4- in sulfuric acid medium using Cyanex 923. Effects of different variables on the extraction of Mn(II) and MnO4-, such as the concentrations of acid, the extractant, and the temperature, were investigated. Results indicated that Mn(II) was extracted weakly by Cyanex 923; however, MnO4- could be strongly extracted into the organic phase. The extraction mechanism of MnO4- was proposed, and the influence of MnO4- on the extraction of cerium was identified when KMnO4 as oxidizer added into the bastnasite sulfuric acid leaching liquor. As MnO4- was easier to be extracted into the organic phase than Ce(IV) and then lost its ability for oxidization, a new device was designed to realize sufficient oxidization of cerium from III to IV, and which has been applied to industrialization.