973 resultados para Cerebrospinal fluid shunts


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the cerebrospinal fluid of 26 drug-naive schizophrenics (DSM-III- R), we observed that the level of glutathione ([GSH]) and of its metabolite γ-Glu-Gln was decreased by 27% and 16% respectively. Using a new in-vivo method based on magnetic resonance spec- troscopy, [GSH] was measured in the medial prefrontal cortex of 18 schizophrenics and found to be 52 % lower than in controls (n = 20). This is consistent with the recently observed decreased mRNA levels in fibroblasts of patients (n=32) of the two GSH synthesizing en- zymes (glutathione synthetase (GSS), and glutamate-cysteine ligase M (GCLM) the modulatory subunit of glutamate-cysteine ligase). Moreover, the level of GCLM expression in fibroblasts correlates neg- atively with the psychopathology (positive, general and some nega- tive symptoms). Thus, the observed difference in gene expression is not only the cause of low brain [GSH], but is also related to the sever- ity of symptoms, suggesting that fibroblasts are adequate surrogate for brain tissue. A hypothesis was proposed, based on a central role of GSH in the pathophysiology of schizophrenia. GSH is an important endogenous redox regulator and neuroactive substance. GSH is pro- tecting cells from damage by reactive oxygen species generated, among others, by the metabolism of dopamine. A GSH deficit-in- duced oxidative stress would lead to lipid peroxidation and micro-le- sions in the surrounding of catecholamine terminals, affecting the synaptic contacts on dendritic spines of cortical neurones, where ex- citatory glutamatergic terminals converge with dopaminergic ones. This would lead to spines degeneration and abnormal nervous con- nections or structural disconnectivity, possibly responsible for posi- tive, perceptive and cognitive symptoms of schizophrenia. In addi- tion, a GSH deficit could also lead to a functional disconnectivity by depressing NMDA neurotransmission, in analogy to phencyclidine effects. Present experimental biochemical, cell biological and behav- ioral data are consistent with the proposed mechanism: decreasing pharmacologically [GSH] in experimental models, with or without blocking DA uptake (GBR12909), induces morphological and behav- ioral changes similar to those observed in patients. Dendritic spines: (a) In neuronal cultures, low [GSH] and DA induce decreased density of neural processes; (b) In developing rats (p5-p16), [GSH] deficit and GBR induce a decrease in normal spines in prefrontal pyramids and in GABA-parvalbumine but not of -calretinine immunoreactivity in anterior cingulate. NMDA-dependant synaptic plasticity: GSH deple- I/13 tion in hippocampal slices impairs long-term potentiation. Develop- ing rats with low [GSH] and GBR have deficit in olfactory integration and in object recognition which appears earlier in males than fe- males, in analogy to the delay of the psychosis onset between man and woman. In summary, a deficit of GSH and/or GSH-related enzymes during early development could constitute a major vulnerability fac- tor in schizophrenia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ABSTRACTSchizophrenia is a major psychiatric disorder occurring with a prevalence of 1% in the worldwide population. It develops progressively with psychosis onset in late adolescence or earlyadulthood. The disorder can take many different facets and has a highly diffuse anddistributed neuropathology including deficits in major neurotransmitter systems,myelination, stress regulation, and metabolism. The delayed onset and the heterogeneouspathology suggest that schizophrenia is a developmental disease that arises from interplayof genetic and environmental factors during sensitive periods. Redox dysregulation due to animbalance between pro-oxidants and antioxidant defence mechanisms is among the riskfactors for schizophrenia. Glutathione (GSH) is the major cellular redox regulator andantioxidant. Levels of GSH are decreased in cerebrospinal fluid, prefrontal cortex and postmortemstriatum of schizophrenia patients. Moreover, polymorphisms of the key GSHsynthesizingenzyme, glutamate-cysteine ligase, modifier (GCLM) subunit, are associatedwith the disease, suggesting that GSH deficit is of genetic origin. Here we used miceknockout (KO) for the GCLM gene, which display chronic GSH deficit (~70 to 80% decrease)to investigate the direct link between redox dysregulation and schizophrenia. Accordingly,we evaluated whether GCLM KO compared to normal wildtype mice display behavioralchanges that relate to schizophrenia symptoms and whether their brains showmorphological, functional or metabolic alterations that resemble those in patients.Moreover, we exposed pubertal GCLM mice to repeated mild stress and measured theirhormonal and behavioral stress reactivity. Our data show that chronic GSH deficit isassociated with altered emotion- and stress-related behaviors, deficient prepulse inhibition,pronounced amphetamine-induced hyperlocomotion but normal spatial learning andworking memory. These changes represent important schizophrenia endophenotypes.Moreover, this particular pattern of change indicates impairment of the ventralhippocampus (VH) and related circuitry as opposed to the dorsal hippocampus (DH), which isimplicated in spatial information processing. This is consistent with a selective deficit ofparvalbumin positive interneurons and gamma oscillation in the VH but not DH. Increasedlevels of circulating stress hormones in KO mice following pubertal stress corroborate VHdysfunction as it is involved in negative feedback control of the stress response. VHstructural and functional deficits are frequently found in the schizophrenic brain. Metabolicevaluation of the developing GCLM KO anterior cortex using in vivo magnetic resonancespectroscopy revealed elevated glutamine (Gln), glutamate (Glu), Gln/Glu and N-acetylaspartate(NAA) during the pre-pubertal period. Similar changes are reported in earlyschizophrenia. Overall, we observe phenotypic anomalies in GSH deficient GCLM KO micethat correspond to major schizophrenia endophenotypes. This supports an important rolefor redox dysregulation in schizophrenia and validates the GCLM KO mouse as model for thedisease. Moreover, our results indicate that puberty may be a sensitive period for redoxsensitivechanges highliting the importance of early intervention. Gln, Gln/Glu, Glu and NAAmay qualify as early metabolic biomarkers to identify young at-risk individuals. Since chronictreatment with NAC normalized most metabolic changes in GCLM KO mice, NAC may be oneadjunct treatment of choice for early intervention in patients.RESUMELa schizophrénie est une maladie psychiatrique majeure avec une prévalence de 1% dans lapopulation. Son développement est progressif, les premières psychoses apparaissant àl'adolescence ou au début de l'âge adulte. La maladie a plusieurs présentations et uneneuropathologie étendue, qui inclut des déficits neurochimiques, métaboliques, de lamyélination et de la régulation du stress. L'émergence tardive et l'hétérogénéité de lapathologie suggèrent que la schizophrénie est une maladie développementale, favorisée pardes facteurs génétiques et environnementaux durant des périodes sensibles. La dérégulationrédox, due à un déséquilibre entre facteurs pro-oxidantes et défenses anti-oxidantes,constitue un facteur de risque. Le glutathion (GSH) est le principal régulateur rédox et antioxidantdes cellules, ses taux sont diminués dans le liquide céphalorachidien, le cortexpréfrontal et le striatum de patients. De plus, des variations du gène codant la sous-unitémodulatrice (GCLM) de la glutamate-cystéine ligase, enzyme de synthèse du GSH, sontassociés la maladie, suggérant que le déficit observé chez les patients est d'originegénétique. Nous avons donc utilisé des souris ayant une délétion du gène GCLM (KO), quiont un déficit chronique en GSH (70-80%), afin d'étudier le lien entre une dérégulation rédoxet la schizophrénie. Nous avons évalué si ces souris présentent des altérationscomportementales analogues aux symptômes de la maladie, et des modificationsstructurelles, fonctionnelles et métaboliques au niveau du cerveau, ressemblant à celles despatients. De plus, nous avons soumis les souris à des stresses modérés durant la puberté,puis mesuré les réponses hormonales et comportementales. Les animaux présentent undéficit pré-attentionnel du traitement des informations moto-sensorielles, un déficit pourcertains apprentissages, une réponse accrue à l'amphétamine, mais leurs mémoires spatialeet de travail sont préservées. Ces atteintes comportementales sont analogues à certainsendophénotypes de la schizophrénie. De plus, ces changements comportementaux sontlargement expliqués par une perturbation morphologique et fonctionnelle de l'hippocampeventral (HV). Ainsi, nous avons observé un déficit sélectif des interneurones immunoréactifsà la parvalbumine et une désynchronisation neuronale dans l'HV. L'hippocampe dorsal,impliqué dans l'orientation spatiale, demeure en revanche intact. L'augmentationd'hormones de stress dans le sang des souris KO suite à un stress prépubertal soutien aussil'hypothèse d'une dysfonction de l'HV, connu pour moduler ce type de réponse. Des déficitsstructurels et fonctionnels dans l'hippocampe antérieur (ventral) ont d'ailleurs été rapportéschez des patients schizophrènes. Par de résonance magnétique, nous avons également suivile profil métabolique du le cortex antérieur au cours du développement postnatal des sourisKO. Ces mesures ont révélé des taux élevés de glutamine (Gln), glutamate (Glu), du ratioGln/Glu, et de N-acétyl-aspartate (NAA) durant la période prépubertale. Des altérationssimilaires sont décrites chez les patients durant la phase précoce. Nous avons donc révélédes anomalies phénotypiques chez les souris GCLM KO qui reflètent certainsendophénotypes de la schizophrénie. Nos résultats appuient donc le rôle d'une dérégulationrédox dans l'émergence de la maladie et le potentiel des souris KO comme modèle. De plus,cette étude met en évidence la puberté comme période particulièrement sensible à unedérégulation rédox, renforçant l'importance d'une intervention thérapeutique précoce. Dansce cadre, Gln, Gln/Glu, Glu and NAA seraient des biomarqueurs clés pour identifier de jeunesindividus à risque. De part son efficacité dans notre modèle, NAC pourrait être unesubstance de choix dans le traitement précoce des patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Long-term side-effects and cost of HIV treatment motivate the development of simplified maintenance. Monotherapy with ritonavir-boosted lopinavir (LPV/r-MT) is the most widely studied strategy. However, efficacy of LPV/r-MT in compartments remains to be shown. METHODS: Randomized controlled open-label trial comparing LPV/r-MT with continued treatment for 48 weeks in treated patients with fully suppressed viral load. The primary endpoint was treatment failure in the central nervous system [cerebrospinal fluid (CSF)] and/or genital tract. Treatment failure in blood was defined as two consecutive HIV RNA levels more than 400 copies/ml. RESULTS: The trial was prematurely stopped when six patients on monotherapy (none in continued treatment-arm) demonstrated a viral failure in blood. At study termination, 60 patients were included, 29 randomized to monotherapy and 13 additional patients switched from continued treatment to monotherapy after 48 weeks. All failures occurred in patients with a nadir CD4 cell count below 200/microl and within the first 24 weeks of monotherapy. Among failing patients, all five patients with a lumbar puncture had an elevated HIV RNA load in CSF and four of six had neurological symptoms. Viral load was fully resuppressed in all failing patients after resumption of the original combination therapy. No drug resistant virus was found. The only predictor of failure was low nadir CD4 cell count (P < 0.02). CONCLUSION: Maintenance of HIV therapy with LPV/r alone should not be recommended as a standard strategy; particularly not in patients with a CD4 cell count nadir less than 200/microl. Further studies are warranted to elucidate the role of the central nervous system compartment in monotherapy-failure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An increased oxidative stress and alteration of the antioxidant systems have been observed in schizophrenia. Glutathione (GSH), a major redox regulator, is decreased in patients' cerebrospinal fluid, prefrontal cortex in vivo and striatum post-mortem tissue. Most importantly, there is genetic and functional evidence for the implication of the gene of the glutamate cysteine ligase (GCL) catalytic subunit, the key GSH-synthesizing enzyme. We have developed animal models for a GSH deficit to study the consequences of such deficit on the brain development. A GSH deficit combined with elevated dopamine (DA) during development leads to reduced parvalbumin (PV) expression in a subclass of GABA interneurons in rat anterior cingulate cortex (ACC). Similar changes are observed in postmortem brain tissue of schizophrenic patients. GSH dysregulation increases vulnerability to oxidative stress, that in turn could lead to cortical circuit anomalies in the schizophrenic brain. In the present study, we use a GCL modulatory subunit (GCLM) knock-out (KO) mouse model that presents up to 80% decreased brain GSH levels. During postnatal development, a subgroup of animals from each genotype is exposed to elevated oxidative stress induced by treatment with the DA reuptake inhibitor GBR12909. Results reveal a significant genotype-specific delay International Congress on Schizophrenia Research 136 10. 10. Neuroanatomy, Animal Downloaded from http://schizophreniabulletin.oxfordjournals.org at Bibliotheque Cantonale et Universitaire on June 18, 2010 in cortical PV expression at postnatal day P10 in GCLM-KO mice, as compared to wild-type. This effect seems to be further exaggerated in animals treated with GBR12909 from P5 to P10. At P20, PV expression is no longer significantly reduced in GCLM-KO ACC without GBR but is reduced if GBR is applied from P10 to P20. However, our result show that GCLM-KO mice exhibit increased oxidative stress, cortical altered myelin development as shown by MBP marker, and more specifically impairment of the peri-neuronal net known to modulate PV connectivity. In addition, we also observe a reduced PV expression in the ventro-temporal hippocampus of adult GCLM-KO mice, suggesting that anomalies of the PV interneurons prevail at least in some brain regions throughout the adulthood. Interestingly, the power of kainate-induced gamma oscillations, known to be dependent on proper activation of PV interneuron's, is also lower in hippocampal slices of adult GCLM KO mice. These results suggest that the PV positive GABA interneurons is particularly vulnerable to increased oxidative stress

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Glutathione (GSH) is a major redox regulator and antioxidant and is decreased in cerebrospinal fluid and prefrontal cortex of schizophrenia patients [Do et al. (2000) Eur J Neurosci 12:3721]. The genes of the key GSH-synthesizing enzyme, glutamate- cysteine ligase catalytic (GCLC) and modifier (GCLM) subunits, are associated with schizophrenia, suggesting that the deficit in GSH synthesis is of genetic origin [Gysin et al. (2007) PNAS 104:16621]. GCLM knock-out (KO) mice, which display an 80% decrease in brain GSH levels, have abnormal brain morphology and function [Do et al. (2009) Curr Opin Neurobiol 19:220]. Developmental redox deregulation by impaired GSH synthesis and environmental risk factors generating oxidative stress may have a central role in schizophrenia. Here, we used GCLM KO mice to investigate the impact of a genetically dysregulated redox system on the neurochemical profile of the developing brain. Methods: The neurochemical profile of the anterior and posterior cortical areas of male and female GCLM KO and wild-type mice was determined by in vivo 1H NMR spectroscopy on postnatal days 10, 20, 30, 60 and 90, under 1 to 1.5% isoflurane anaesthesia. Localised 1H NMR spectroscopy was performed on a 14.1 T, 26 cm VNMRS spectrometer (Varian, Magnex) using a home-built 8 mm diameter quadrature surface coil (used both for RF excitation and signal reception). Spectra were acquired using SPECIAL with TE of 2.8 ms and TR of 4 s from VOIs placed in anterior or posterior regions of the cortex [Mlynárik et al. (2006) MRM 56:965]. LCModel analysis allowed in vivo quantification of a neurochemical profile composed of 18 metabolites. Results: GCLM KO mice displayed nearly undetectable GSH levels as compared to WT mice, demonstrating their drastic redox deregulation. Depletion of GSH triggered alteration of metabolites related to its synthesis, namely increase of glycine and glutamate levels during development (P20 and P30). Concentrations of glutamine and aspartate that are produced from glutamate were also increased in GCLM KO animals relative to WT. In addition, GCLM KO mice also showed higher levels of N-acetylaspartate that originates from the acetylation of aspartate. These metabolites are particularly implicated in neurotransmission processes and in mitochondrial oxidative metabolism. Their increase may indicate impaired mitochondrial metabolism with concomitant accumulation of lactate in the adult mice (P60 and P90). In addition, the GSH depletion triggers reduction of GABA concentration in anterior cortex of the P60 mice, which is in accordance with known impairment of GABAergic interneurons in that area. Changes were generally more pronounced in males than in females at P60, which is consistent with earlier disease onset in male patients. Discussion: In conclusion, the observed metabolic alterations in the cortex of a mouse model of redox deregulation suggest impaired mitochondrial metabolism and altered neurotransmission. The results also highlight the age between P20 and P30 as a sensitive period during the development for these alterations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

INTRODUCTION: Clival chordomas present with headache, commonly VI cranial nerve palsy or sometimes with lower cranial nerve involvement. Very rarely, they present with cerebrospinal fluid rhinorrhoea due to an underlying chordoma-induced skull base erosion. CASE PRESENTATION: A 60-year old Caucasian woman presented with meningitis secondary to cerebrospinal fluid rhinorrhoea. At first, radiological imaging did not reveal a tumoral condition, though intraoperative exploration and tissue histology revealed a chordoma which eroded her clivus and had a transdural extension. CONCLUSION: Patients who present with meningitis and cerebrospinal fluid rhinorrhoea could have an underlying erosive lesion which can sometimes be missed on initial radiological examination. Surgical exploration allows collecting suspicious tissue for histological diagnosis which is important for the actual treatment. A revision endoscopic excision of a clival chordoma is challenging and has been highlighted in this report.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As culture-based methods for the diagnosis of invasive fungal diseases (IFD) in leukemia and hematopoietic SCT patients have limited performance, non-culture methods are increasingly being used. The third European Conference on Infections in Leukemia (ECIL-3) meeting aimed at establishing evidence-based recommendations for the use of biological tests in adult patients, based on the grading system of the Infectious Diseases Society of America. The following biomarkers were investigated as screening tests: galactomannan (GM) for invasive aspergillosis (IA); β-glucan (BG) for invasive candidiasis (IC) and IA; Cryptococcus Ag for cryptococcosis; mannan (Mn) Ag/anti-mannan (A-Mn) Ab for IC, and PCR for IA. Testing for GM, Cryptococcus Ag and BG are included in the revised EORTC/MSG (European Organization for Research and Treatment of Cancer/Mycoses Study Group) consensus definitions for IFD. Strong evidence supports the use of GM in serum (A II), and Cryptococcus Ag in serum and cerebrospinal fluid (CSF) (A II). Evidence is moderate for BG detection in serum (B II), and the combined Mn/A-Mn testing in serum for hepatosplenic candidiasis (B III) and candidemia (C II). No recommendations were formulated for the use of PCR owing to a lack of standardization and clinical validation. Clinical utility of these markers for the early management of IFD should be further assessed in prospective randomized interventional studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

(from the journal abstract) Schizophrenia, a major psychiatric disease, affects individuals in the centre of their personality. Its aetiology is not clearly established. In this review, we will present evidence that patients suffering of schizophrenia present a brain deficit in glutathione, a major endogenous redox regulator and antioxidant. We will also show that, in experimental models, a decrease in glutathione, particularly during development, induces morphological, electrophysiological and behavioural anomalies consistent with those observed in the disease. In the cerebrospinal fluid of drug-naive schizophrenics, glutathione level was decreased by 27% and its direct metabolite of glutathione by 16%. Glutathione level in prefrontal cortex of patients, measured by magnetic resonance spectroscopy, was 52% lower than in controls. Patients' fibroblasts reveal a decrease in mRNA levels of the two glutathione synthesising enzymes, glutamatecysteine ligase modulatory subunit (GCLM) and glutathione synthetase. GCLM expression level in fibroblasts correlates negatively with symptoms severity. Glutathione is an important endogenous redox regulator and neuroactive substance. It is protecting cells from damage by reactive oxygen species generated, among others, by dopamine metabolism. A glutathione deficit-induced oxidative stress would lead to lipid peroxidation and micro-lesions at the level of dendritic spines, a synaptic damage responsible for abnormal nervous connections or structural disconnectivity. On the other hand, a glutathione deficit could also lead to a functional disconnectivity by depressing NMDA neurotransmission, in analogy to phencyclidine effects. Present experimental data are consistent with the proposed hypothesis: decreasing pharmacologically glutathione level in experimental models, with or without blocking dopamine (DA) uptake (GBR12909), induces morphological, electrophysiological and behavioural changes similar to those observed in patients. In summary, a deficit of glutathione and/or glutathione-related enzymes during early development would lead to both a functional and a structural disconnectivity, which could be at the basis of some perceptive, cognitive and behavioural troubles of the disease. It could constitute a major vulnerability factor for schizophrenia. Attempts to restore physiological glutathione functions could open new therapeutic avenues. This translational research, made possible by a close interaction between clinicians and neuroscientists, should also pave the way to the identification of biological markers for schizophrenia. In turn, they should allow early diagnostic and hopefully preventive intervention to this devastating disease. (PsycINFO Database Record (c) 2005 APA, all rights reserved)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

STUDY DESIGN.: Retrospective radiologic study on a prospective patient cohort. OBJECTIVE.: To devise a qualitative grading of lumbar spinal stenosis (LSS), study its reliability and clinical relevance. SUMMARY OF BACKGROUND DATA.: Radiologic stenosis is assessed commonly by measuring dural sac cross-sectional area (DSCA). Great variation is observed though in surfaces recorded between symptomatic and asymptomatic individuals. METHODS.: We describe a 7-grade classification based on the morphology of the dural sac as observed on T2 axial magnetic resonance images based on the rootlet/cerebrospinal fluid ratio. Grades A and B show cerebrospinal fluid presence while grades C and D show none at all. The grading was applied to magnetic resonance images of 95 subjects divided in 3 groups as follows: 37 symptomatic LSS surgically treated patients; 31 symptomatic LSS conservatively treated patients (average follow-up, 2.5 and 3.1 years); and 27 low back pain (LBP) sufferers. DSCA was also digitally measured. We studied intra- and interobserver reliability, distribution of grades, relation between morphologic grading and DSCA, as well relation between grades, DSCA, and Oswestry Disability Index. RESULTS.: Average intra- and interobserver agreement was substantial and moderate, respectively (k = 0.65 and 0.44), whereas they were substantial for physicians working in the study originating unit. Surgical patients had the smallest DSCA. A larger proportion of C and D grades was observed in the surgical group. Surface measurementsresulted in overdiagnosis of stenosis in 35 patients and under diagnosis in 12. No relation could be found between stenosis grade or DSCA and baseline Oswestry Disability Index or surgical result. C and D grade patients were more likely to fail conservative treatment, whereas grades A and B were less likely to warrant surgery. CONCLUSION.: The grading defines stenosis in different subjects than surface measurements alone. Since it mainly considers impingement of neural tissue it might be a more appropriate clinical and research tool as well as carrying a prognostic value.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Converging evidence favors an abnormal susceptibility to oxidative stress in schizophrenia. Decreased levels of glutathione (GSH), the major cellular antioxidant and redox regulator, was observed in cerebrospinal-fluid and prefrontal cortex of patients. Importantly, abnormal GSH synthesis of genetic origin was observed: Two case-control studies showed an association with a GAG trinucleotide repeat (TNR) polymorphism in the GSH key synthesizing enzyme glutamate-cysteine-ligase (GCL) catalytic subunit (GCLC) gene. The most common TNR genotype 7/7 was more frequent in controls, whereas the rarest TNR genotype 8/8 was three times more frequent in patients. The disease associated genotypes (35% of patients) correlated with decreased GCLC protein, GCL activity and GSH content. Similar GSH system anomalies were observed in early psychosis patients. Such redox dysregulation combined with environmental stressors at specific developmental stages could underlie structural and functional connectivity anomalies. In pharmacological and knock-out (KO) models, GSH deficit induces anomalies analogous to those reported in patients. (a) morphology: spine density and GABA-parvalbumine immunoreactivity (PV-I) were decreased in anterior cingulate cortex. KO mice showed delayed cortical PV-I at PD10. This effect is exacerbated in mice with increased DA from PD5-10. KO mice exhibit cortical impairment in myelin and perineuronal net known to modulate PV connectivity. (b) physiology: In cultured neurons, NMDA response are depressed by D2 activation. In hippocampus, NMDA-dependent synaptic plasticity is impaired and kainate induced g-oscillations are reduced in parallel to PV-I. (c) cognition: low GSH models show increased sensitivity to stress, hyperactivity, abnormal object recognition, olfactory integration and social behavior. In a clinical study, GSH precursor N-acetyl cysteine (NAC) as add on therapy, improves the negative symptoms and decreases the side effects of antipsychotics. In an auditory oddball paradigm, NAC improves the mismatched negativity, an evoked potential related to pre-attention and to NMDA receptors function. In summary, clinical and experimental evidence converge to demonstrate that a genetically induced dysregulation of GSH synthesis combined with environmental insults in early development represent a major risk factor contributing to the development of schizophrenia

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Initial non-inflammatory demyelination in canine distemper virus infection (CDV) develops against a background of severe immunosuppression and is therefore, thought to be virus-induced. However, recently we found a marked invasion of T cells throughout the central nervous system (CNS) in dogs with acute distemper despite drastic damage to the immune system. In the present study, this apparent paradox was further investigated by immunophenotyping of lymphocytes, following experimental CDV challenge in vaccinated and non-vaccinated dogs. In contrast to CDV infected, unprotected dogs, vaccinated dogs did not become immunosuppressed and exhibited a strong antiviral immune response following challenge with virulent CDV. In unprotected dogs rapid and drastic lymphopenia was initially due to depletion of T cells. In peripheral blood, CD4(+) T cells were more sensitive and depleted earlier and for a longer time than CD8(+) cells which recovered soon. In the cerebrospinal fluid (CSF) we could observe an increase in the T cell to B cell and CD8(+) to CD4(+) ratios. Thus, partial protection of the CD8(+) cell population could explain why part of the immune function in acute distemper is preserved. As found earlier, T cells invaded the CNS parenchyma in these dogs but also in the protected challenged dogs, which did not develop any CNS disease at all. Since markers of T cell activation were upregulated in both groups of animals, this phenomenon could in part be related to non-specific penetration of activated T cells through the blood brain barrier. However, in diseased animals much larger numbers of T cells were found in the CNS than in the protected dogs, suggesting that massive invasion of T cells in the brain requires CDV expression in the CNS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oxidative stress could be involved in the pathophysiology of schizophrenia, a major psychiatric disorder. Glutathione (GSH), a redox regulator, is decreased in patients' cerebrospinal fluid and prefrontal cortex. The gene of the key GSH-synthesizing enzyme, glutamate cysteine ligase modifier (GCLM) subunit, is strongly associated with schizophrenia in two case-control studies and in one family study. GCLM gene expression is decreased in patients' fibroblasts. Thus, GSH metabolism dysfunction is proposed as one of the vulnerability factors for schizophrenia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neuropeptides appear to play a role in the pathophysiology of depression and electroconvulsive treatment and lithium affect these compounds in human cerebrospinal fluid (CSF) and rodent brain. Consequently, we investigated whether long-term treatment with the selective serotonin reuptake inhibitor (SSRI) citalopram (Cit) would also affect neuropeptides in CSF of depressed patients. Changes in CSF monoamine metabolites were also explored. CSF concentrations of corticotropin-releasing hormone (CRH)-like immunoreactivity (-LI), neuropeptide Y (NPY)-LI, and Cit were determined in 21 patients with major depression. Lumbar puncture was performed in the morning at baseline and was repeated after at least 4 wk of Cit treatment (40 mg/d). The severity of depression was assessed by the Hamilton Rating Scale for Depression (HAMD). Cit treatment was associated with a significant increase in NPY-LI and decrease in CRH-LI. An evaluation of the relationship between changes in concentrations of NPY-LI, CRH-LI, and the clinical response showed significant correlations between these parameters. Significant NPY and CRH changes in CSF following treatment as well as correlations to changes in HAMD support the hypothesis that these two peptides play a role in affective disorders and are markers of therapeutic response.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Significant progress has been made in understanding the molecular pathogenesis of gliomas and in predicting general outcome depending on a limited set of clinical parameters and molecular markers. However, methylation of the O⁶-methylguanine DNA methyltransferase (MGMT) gene promoter is the only molecular marker linked to sensitivity of a specific treatment, that is, alkylating agent chemotherapy, and this predictive value may be limited to glioblastoma. Moreover, in the absence of potent alternative drugs, temozolomide chemotherapy should not be withheld from patients with newly diagnosed glioblastoma without MGMT promoter methylation in general practice. In the context of clinical trials, however, irrespective of whether classical cytotoxic drugs, tyrosine kinase inhibitors or antiangiogenic agents are used, tissue should be centrally collected. Appropriate research programs should seek to define enriched patient populations for future trials and ultimately facilitate individualized cancer treatments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Summary: Decrease in glutathione (GSH) levels was observed in cerebrospinal fluid, prefrontal cortex and post-mortem striatum of schizophrenia patients. Evidences suggest a defect in GSH synthesis at the levels of the rate-limiting synthesizing enzyme, glutamate cysteine ligase (GCL). Indeed, polymorphisms in the gene of the modifier subunit of GCL (GCLM) was shown to be associated with the disease in three different populations, GCLM gene expression is decreaséd in fibroblasts from patients and the increase in GCL activity induced by an oxidative stress is lower in patients' fibroblasts compared to controls. GSH being a major antioxydant and redox regulator, its presence is of high importance for protecting cells against oxidative stress. The aim of the present work was to use various substances to increase GSH levels by diverse strategies. Since the synthesizing enzyme GCL is defective, bypassing this enzyme was the first strategy we used. GSH ethyl ester (GSHEE), a membrane permeable analog of GSH, succeeded in replenishing GSH levels in cultured neurons and astrocytes previously depleted in GSH by L-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of GCL. GSHEE also abolished dopamine-induced decrease of NMDA-mediated calcium response observed in BSO-treated neurons. y-Glutamylcysteine ethyl ester (GCSE), a membrane permeable analog of the product of GCL, increased GSH levels only in astrocytes. The second strategy was to boost the defective enzyme GCL. While quercetin (flavonoid) could increase GSH levels only in astrocytes, curcumin (polyphenol) and tertbutylhydroquinone (quinone) were successful in both neurons and astrocytes, via an increase in the gene expression of the two subunits of GCL and, consequently, an increase in the activity of the enzyme. However, FK506, an immunosupressant, was unefficient. Treating astrocytes from GCLM KO mice showed that the modulatory subunit is necessary for the action of the substances. Finally, since cysteine is the limiting precursor in the synthesis of GSH, we hypothesized that we could increase GSH levels by providing more of this precursor. N-acetyl-cysteine (NAC), a cysteine donor, was administered to schizophrenia patients, using adouble-blind and cross-over protocol. NAC significantly improved the mismatch negativity (MMN), a component of the auditory evoked potentials, thought to reflect selective current flowing through open, unblocked NMDA channels. Considering that NMDA function is reduced when GSH levels are low, increasing these levels with NAC could improve NMDA function as reflected by the improvement in the generation of the MMN. Résumé: Les taux de glutathion (GSH) dans le liquide céphalo-rachidien, le cortex préfrontal ainsi que le striatum post-mortem de patients schizophrènes, sont diminués. L'enzyme limitante dans la synthèse du GSH, la glutamyl-cysteine ligase (GCL), est défectueuse. En effet, des polymorphismes dans le gène de la sous-unité modulatrice de GCL (GCLM) sont associés à la maladie, l'expression du gène GCLM est diminuée dans les fibroblastes de patients et, lors d'un stress oxidative, l'augmentation de l'activité de GCL est plus faible chez les patients que chez les contrôles. Le GSH étant un important antioxydant et régulateur du status redox, sa présence est primordiale afin de protéger les cellules contre les stress oxydatifs. Au cours du présent travail, une variété de substances ont été utilisées dans le but d'augmenter les taux de GSH. Passer outre l'enzyme de synthèse GCL qui est défectueuse fut la première stratégie utilisée. L'éthylester de GSH (GSHEE), un analogue du GSH qui pénètre la membrane cellulaire, a augmenté les taux de GSH dans des neurones et des astrocytes déficitaires en GSH dû au L-buthionine-(S,R)-sulfoximine (BSO), un inhibiteur du GCL. Dans ces neurones, le GSHEE a aussi aboli la diminution de la réponse NMDA, induite parla dopamine. L'éthyl-ester de y-glutamylcysteine (GCEE), un analogue du produit de la GCL qui pénètre la membrane cellulaire, a augmenté les taux de GSH seulement dans les astrocytes. La seconde stratégie était d'augmenter l'activité de l'enzyme GCL. Tandis que la quercétine (flavonoïde) n'a pu augmenter les taux de GSH que dans les astrocytes, la curcumin (polyphénol) et le tert-butylhydroquinone (quinone) furent efficaces dans les deux types de cellules, via une augmentation de l'expression des gènes des deux sous-unités de GCL et de l'activité de l'enzyme. Le FK506 (immunosupresseur) n' a démontré aucune efficacité. Traiter des astrocytes provenant de souris GCLM KO a permis d'observer que la sous-unité modulatoire est nécessaire à l'action des substances. Enfin, puisque la cysteine est le substrat limitant dans la synthèse du GSH, fournir plus de ce présurseur pourrait augmenter les taux de GSH. Nacétyl-cystéine (NAC), un donneur de cystéine, a été administrée à des schizophrènes, lors d'une étude en double-aveugle et cross-over. NAC a amélioré le mismatch negativity (MMN), un composant des potentials évoqués auditifs, qui reflète le courant circulant via les canaux NMDA. Puisque la fonctionnalité des R-NMDA est diminuée lorsque les taux de GSH sont bas, augmenter ces taux avec NAC pourrait améliorer la fonction des R-NMDA, réflété par une augmentation de l'amplitude du MMN.