992 resultados para Central Tibetan Plateau


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nannofossil assemblages enriched in Braarudosphaera occur in lower Oligocene to lower Miocene sediments at Ocean Drilling Program Sites 762 and 763 on the central Exmouth Plateau. Braarudosphaerids appear here rather abruptly in the lower Oligocene (in Zone NP21). They reach their greatest numbers in the lower Oligocene (in Zones NP22 and NP23), where they comprise up to 10% of some samples. Braarudosphaera bigelowii is the overwhelmingly dominant species, occurring together with rare specimens of B. discula and Micrantholithus pinguis. The holococcoliths Peritrachelina joidesa and Lantemithus minutus are also associated with the Braarudosphaera enrichment. There are two populations of B. bigelowii: one of normal size (10-14 µm) and one of large specimens (20-22 µm). The larger braarudosphaerids are more common than the smaller forms. Braarudosphaera-rich sediments are absent at Wombat Plateau sites during the same time interval. We attribute this to latitudinal control, because the Wombat sites are about 4° north of the central Exmouth Plateau sites. We believe that the occurrence of braarudosphaerids is related to an Oligocene to early Miocene oceanographic event on the Exmouth Plateau. We suspect that mid-ocean up welling of cool, low-salinity, nutrient-rich water along a divergent zone created the Braarudosphaera-nch sediments in the South Atlantic and Indian oceans.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The evolution of oceanic and climatic conditions the northeast Indian Ocean during the last 7 m.y. is revealed in the sediments from Site 758. We present detailed and continuous records of d18O and d13C from planktonic foraminifers, weight percent calcium carbonate, weight percent coarse fraction, magnetic susceptibility, and geomagnetic reversals. Sample spacing of the records ranges from 3 to 10 cm and is equivalent to an average time interval of 2000 to 6000 yr. Despite the fact that core recovery ranged between 100% and 105%, recovery gaps as large as 2.7 m occurred at nearly every break between advanced hydraulic piston cores. Approximately 12% of the late Neogene sequence was not recovered in each of the two holes drilled at Site 758. To circumvent the discontinuity introduced by the gaps, a composite depth section was constructed from multiple cores taken from offset holes at Site 758. The resulting composite depth section extends continuously from 0 to 116 mbsf, from the Holocene to the upper Miocene. A detailed chronostratigraphy is based on geomagnetic reversals which extend from the Brunhes Chron to Chron 6, and on d18O stages 1 through 105, which span from 0 to 2.5 Ma. The d18O record is dominated by a ~40-k.y. cycle in the late Pliocene and early Pleistocene, and is followed by a change to a ~100-k.y. cycle in the late Pleistocene. The mid-Pleistocene transition between these two modes of variability occurs between d18O stages 25 and 22 (between 860 and 800 Ka). Thirteen major volcanic ash horizons from the Indonesian arc are observed throughout the sedimentary section and are dated by their relative position within the geomagnetic reversals and the d18O chronostratigraphy. Since 5 Ma, there has been a long-term decline in weight percent CaCO3 and CaCO3 mass accumulation rates, and an associated rise in non-CaCO3 mass accumulation rates. We attribute these changes to a decrease in CaCO3 productivity and an increase in terrigenous sedimentation through enhanced riverine input. Such input may be linked to rapid tectonic uplift of the Himalayas and the Tibetan Plateau via mechanisms such as the intensification of the monsoonal rains, increased fluvial erosion, and regional glaciation. The long-term increase in percent coarse fraction since 5 Ma suggests a gradual increase in CaCO3 preservation. Higher frequency fluctuations in CaCO3 preservation are superimposed on the long-term trend and are related to climate fluctuations. The abrupt drop (-50%) in CaCO3 accumulation at 3.4 Ma signals a dramatic decrease in CaCO3 production that occurred over much of the Indian Ocean.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Detection of climate response to orbital forcing during Cenozoic long-term global cooling is a key to understanding the behavior of Earth's icehouse climate. Sedimentary rhythm, which is a rhythmic or cyclic variation in the sequence of sediments and sedimentary rocks, is useful for quantitative reconstruction of Earth's evolution during geological time. In this study, we attempt to (1) identify sources of natural gamma ray (NGR) emissions of core recovered during Ocean Drilling Program (ODP) Leg 186 by analyses of physical properties, major element concentrations, diatom abundances, and total organic carbon contents, (2) integrate whole-core NGR intensity of recovered core with wireline logging NGR measurements in order to construct a continuous sedimentary sequence, and (3) discuss changes in the NGR signal in the time domain. This attempt gives us preliminary information to discuss climate stability in relation to orbital forcing thorough geologic time. NGR values are obtained mainly by indirectly measuring the amount of terrigenous minerals including potassium and related elements in the sediments. NGR intensity is also affected by high porosity, which in these sediments was related to the amount of diatom valves. NGR signals might be a proxy of the intensity of the East Asian monsoon off Sanriku. A continuous sedimentary record was constructed by integration of the whole-core NGR intensity measured in sediments obtained from the drilled holes with that measured directly in the borehole by wireline logging, then using a stratigraphic age model to convert to a time series covering 1.3-9.7 Ma with a short break at ~5 Ma. High sedimentation rate (H) stages were identified in the sequence, related to intervals of low-amplitude precession and eccentricity variations. The transition of the dominant periodicities through the four H stages may correlate to major shifts in the climate system, including the onset of major Northern Hemisphere glaciation, the initial stage of the East Asian monsoon intensification, and the onset of the East Asian monsoon with uplift of the Himalayas and the Tibetan Plateau.