984 resultados para Cell-surface Changes


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The outer membrane usher protein Caf1A of the plague pathogen Yersinia pestis is responsible for the assembly of a major surface antigen, the F1 capsule. The F1 capsule is mainly formed by thin linear polymers of Caf1 (capsular antigen fraction 1) protein subunits. The Caf1A usher promotes polymerization of subunits and secretion of growing polymers to the cell surface. The usher monomer (811 aa, 90.5 kDa) consists of a large transmembrane β-barrel that forms a secretion channel and three soluble domains. The periplasmic N-terminal domain binds chaperone-subunit complexes supplying new subunits for the growing fiber. The middle domain, which is structurally similar to Caf1 and other fimbrial subunits, serves as a plug that regulates the permeability of the usher. Here we describe the identification, characterization, and crystal structure of the Caf1A usher C-terminal domain (Caf1A(C)). Caf1A(C) is shown to be a periplasmic domain with a seven-stranded β-barrel fold. Analysis of C-terminal truncation mutants of Caf1A demonstrated that the presence of Caf1A(C) is crucial for the function of the usher in vivo, but that it is not required for the initial binding of chaperone-subunit complexes to the usher. Two clusters of conserved hydrophobic residues on the surface of Caf1A(C) were found to be essential for the efficient assembly of surface polymers. These clusters are conserved between the FGL family and the FGS family of chaperone-usher systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Thiol isomerases are a family of endoplasmic reticulum enzymes which orchestrate redox-based modifications of protein disulphide bonds. Previous studies have identified important roles for the thiol isomerases PDI and ERp5 in the regulation of normal platelet function. Objectives: Recently, we demonstrated the presence of a further five thiol isomerases at the platelet surface. In this report we aim to report the role of one of these enzymes - ERp57 in the regulation of platelet function. Methods/Results: Using enzyme activity function blocking antibodies, we demonstrate a role for ERp57 in platelet aggregation, dense granule secretion, fibrinogen binding, calcium mobilisation and thrombus formation under arterial conditions. In addition to the effects of ERp57 on isolated platelets, we observe the presence of ERp57 in the developing thrombus in vivo. Furthermore the inhibition of ERp57 function was found to reduce laser-injury induced arterial thrombus formation in a murine model of thrombosis. Conclusions: These data suggest that ERp57 is important for normal platelet function and opens up the possibility that the regulation of platelet function by a range of cell surface thiol isomerases may represent a broad paradigm for the regulation of haemostasis and thrombosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aims: To investigate the effect of the oxidative stress of ozone on the microbial inactivation, cell membrane integrity and permeability and morphology changes of Escherichia coli. Methods and Results: Escherichia coli BW 25113 and its isogenic mutants in soxR, soxS, oxyR, rpoS and dnaK genes were treated with ozone at a concentration of 6 lg ml)1 for a period up to 240 s. A significant effect of ozone exposure on microbial inactivation was observed. After ozonation, minor effects on the cell membrane integrity and permeability were observed, while scanning electron microscopy analysis showed slightly altered cell surface structure. Conclusions: The results of this study suggest that cell lysis was not the major mechanism of microbial inactivation. The deletion of oxidative stress–related genes resulted in increased susceptibility of E. coli cells to ozone treatment, implying that they play an important role for protection against the radicals produced by ozone. However, DnaK that has previously been shown to protect against oxidative stress did not protect against ozone treatment in this study. Furthermore, RpoS was important for the survival against ozone. Significance and Impact of the Study: This study provides important information about the role of oxidative stress in the responses of E. coli during ozonation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The insect baculovirus Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) enters many mammalian cell lines, prompting its application as a general eukaryotic gene delivery agent, but the basis of entry is poorly understood. For adherent mammalian cells we show that entry is favoured by low pH and increasing the available cell surface area through transient release from the substratum. Low pH also stimulated baculovirus entry into mammalian cells grown in suspension which, optimally, could reach 90% of the transduced population. The basic loop, residues 268-281, of the viral surface glycoprotein gp64 was required for entry and a tetra mutant with increasing basicity increased entry into a range of mammalian cells. The same mutant failed to plaque in Sf9 cells, instead showing individual cell entry and minimal cell to cell spread, consistent with an altered fusion phenotype. Viruses grown in different insect cells showed different mammalian cell entry efficiencies suggesting additional factors also govern entry.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Type III secretion systems of enteric bacteria enable translocation of effector proteins into host cells. Secreted proteins of verotoxigenic Escherichia coli O157 strains include components of a translocation apparatus, EspA, -B, and -D, as well as "effectors" such as the translocated intimin receptor (Tir) and the mitochondrion-associated protein (Map). This research has investigated the regulation of LEE4 translocon proteins, in particular EspA. EspA filaments could not be detected on the bacterial cell surface when E. coli O157:H7 was cultured in M9 minimal medium but were expressed from only a proportion of the bacterial population when cultured in minimal essential medium modified with 25 mM HEPES. The highest proportions of EspA-filamented bacteria were detected in late exponential phase, after which filaments were lost rapidly from the bacterial cell surface. Our previous research had shown that human and bovine E. coli O157:H7 strains exhibit marked differences in EspD secretion levels. Here it is demonstrated that the proportion of the bacterial population expressing EspA filaments was associated with the level of EspD secretion. The ability of individual bacteria to express EspA filaments was not controlled at the level of LEE1-4 operon transcription, as demonstrated by using both beta-galactosidase and green fluorescent protein (GFP) promoter fusions. All bacteria, whether expressing EspA filaments or not, showed equivalent levels of GFP expression when LEEI-4 translational fusions were used. Despite this, the LEE4-espADB mRNA was more abundant from populations with a high proportion of nonsecreting bacteria (low secretors) than from populations with a high proportion of secreting and therefore filamented bacteria (high secretors). This research demonstrates that while specific environmental conditions are required to induce LEEI-4 expression, a further checkpoint exists before EspA filaments are produced on the bacterial surface and secretion of effector proteins occurs. This checkpoint in E. coli O157:H7 translocon expression is controlled by a posttranscriptional mechanism acting on LEE4-espADB mRNA. The heterogeneity in EspA filamentation could arise from phase-variable expression of regulators that control this posttranscriptional mechanism.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVE: Platelet endothelial cell adhesion molecule-1 (PECAM-1) regulates platelet response to multiple agonists. How this immunoreceptor tyrosine-based inhibitory motif-containing receptor inhibits G protein-coupled receptor-mediated thrombin-induced activation of platelets is unknown. APPROACH AND RESULTS: Here, we show that the activation of PECAM-1 inhibits fibrinogen binding to integrin αIIbβ3 and P-selectin surface expression in response to thrombin (0.1-3 U/mL) but not thrombin receptor-activating peptides SFLLRN (3×10(-7)-1×10(-5) mol/L) and GYPGQV (3×10(-6)-1×10(-4) mol/L). We hypothesized a role for PECAM-1 in reducing the tethering of thrombin to glycoprotein Ibα (GPIbα) on the platelet surface. We show that PECAM-1 signaling regulates the binding of fluorescein isothiocyanate-labeled thrombin to the platelet surface and reduces the levels of cell surface GPIbα by promoting its internalization, while concomitantly reducing the binding of platelets to von Willebrand factor under flow in vitro. PECAM-1-mediated internalization of GPIbα was reduced in the presence of both EGTA and cytochalasin D or latrunculin, but not either individually, and was reduced in mice in which tyrosines 747 and 759 of the cytoplasmic tail of β3 integrin were mutated to phenylalanine. Furthermore, PECAM-1 cross-linking led to a significant reduction in the phosphorylation of glycogen synthase kinase-3β Ser(9), but interestingly an increase in glycogen synthase kinase-3α pSer(21). PECAM-1-mediated internalization of GPIbα was reduced by inhibitors of dynamin (Dynasore) and glycogen synthase kinase-3 (CHIR99021), an effect that was enhanced in the presence of EGTA. CONCLUSIONS: PECAM-1 mediates internalization of GPIbα in platelets through dual AKT/protein kinase B/glycogen synthase kinase-3/dynamin-dependent and αIIbβ3-dependent mechanisms. These findings expand our understanding of how PECAM-1 regulates nonimmunoreceptor signaling pathways and helps to explains how PECAM-1 regulates thrombosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Five isoforms of follistatin (FST) (Mr 31, 33, 35, 37, 41kDa) were purified from bovine follicular fluid (bFF). Comparison of their activin- and heparan sulphate proteoglycan (HSP)-binding properties and bio-potencies in neutralization of activin-A action in vitro revealed that all five isoforms bound activin-A, but with different affinities. Only the 31kDa isoform (FST-288) bound to HSP. FST-288 also showed the greatest biopotency with 35 and 41kDa isoforms being least potent. To determine whether bovine follicle development is associated with changing intrafollicular FST and activin profiles, we analyzed bFF from dominant (DF) and subordinate (SF) follicles collected at strategic times during a synchronized estrous cycle. Total FST, activin-A and activin-AB were measured by immunoassay while individual FST isoforms were quantified by immunoblotting. Follicle diameter was positively correlated with estrogen:progesterone ratio (r=0.56) in bFF but negatively correlated with activin-A (r=-0.34), activin-AB (r=-0.80) and ‘total’ FST (r=-0.70) levels. Follicle diameter was positively correlated with abundance of the 41 kDa isoform (r=0.59) but negatively correlated with abundance of 33 and 31 kDa isoforms (r=-0.56, -0.41). Both follicle status (DF vs SF) and cycle stage affected total FST, activin-A, activin-B levels while follicle status, but not cycle stage, affected abundance of 41, 37, 33 and 31kDa FST isoforms. Collectively, these findings indicate that intrafollicular FST isoforms that differ in their ability to bind and neutralise activins and associate with cell-surface proteoglycans, show divergent changes during follicle development. Enhanced FST production may have an important negative role, either directly or via inhibition of the positive effects of activins, on follicle growth and function during follicular waves.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The genus Copidognathus includes one-third of the species of Halacaridae described to date. This article describes spermiogenesis, sperm cell morphology and accompanying secretions from three species of Copidognathus. Initial spermatids have electron-dense cytoplasm with scattered mitochondria, a well-developed Golgi body, and nuclei with patches of heterochromatin. The cytoplasm and nuclei of these cells undergo intense swelling. The second spermatids are large electron-translucent cells, with small mitochondria in row along the remains of the endoplasmatic reticulum. In the succeeding stage, most of the cytoplasmatic structures and mitochondria have disappeared or have undergone profound transformations. Nuclei and cells elongate and chromatin begins to condense near the nuclear envelope. An acrosomal complex appears at the tip of the nucleus. The acrosomal filament is thick and runs the entire length of the nucleus. Plasmalemmal invaginations at the cell surface give rise to tubules filled with an electron-dense material. Sperm cell maturation is completed in the ventral portion of the germinal part, near the testicular lumen. As a final step in spermiogenesis, cytoplasm of the last spermatid undergoes a moderate condensation and the cariotheca disappears. Mature sperm cells were found in a matrix of ""simple"" and ""complex"" corpuscles, the latter consisting of flattened, spindle-shaped secreted bodies. Rather than in individual sperm aggregates, spermatozoa were contained in a single droplet inside the vas deferens, on a large secretion mass, structured as rows of platelets sunk in a fine grained matrix. Each mature sperm cell is covered by a thick secreted coat. In contrast to the genera Rhombognathus and other Actinotrichida, Copidognathus displays a set of features that must be regarded as apomorphic. The absence of usual mitochondria, the presence of electro-dense tubules and secretions similar to those present in Thalassarachna and Halacarellus, and the pattern of nuclear condensation are possibly shared apomorphies with these latter genera. (C) 2010 Elsevier GmbH. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Long-term effects of angiotensin II (Ang II) on vacuolar H(+)-ATPase were studied in a SV40-transformed cell line derived from rat proximal tubules (IRPTC). Using pH(i) measurements with the fluorescent dye BCECF, the hormone increased Na(+)-independent pH recovery rate from an NH(4)Cl pulse from 0.066 +/- 0.014 pH U/min (n = 7) to 0.14 +/- 0.021 pH U/min (n = 13; p < 0.05) in 10 h Ang II (10(-9) M)-treated cells. The increased activity of H(+)-ATPase did not involve changes in mRNA or protein abundance of the B2 subunit but increased cell surface expression of the V-ATPase. Inhibition of tyrosine kinase by genistein blocked Ang II-dependent stimulation of H(+)-ATPase. Inhibition of phosphatidylinositol-3-kinase (PI3K) by wortmannin and of p38 mitogen-activated protein kinase (MAPK) by SB 203580 also blocked this effect. Thus, long-term exposure of IRPTC cells to Ang II causes upregulation of H(+)-ATPase activity due, at least in part, to increased B2 cell surface expression. This regulatory pathway is dependent on mechanisms involving tyrosine kinase, p38 MAPK, and PI3K activation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Glycogen content of white and red skeletal muscles, cardiac muscle, and liver was investigated in conditions where changes in plasma levels of non-esterified fatty acids (NEFA) occur. The experiments were performed in fed and 12 and 48 h-fasted rats. The animals were also submitted to swimming for 10 and 30 min. Glycogen content was also investigated in both pharmacologically induced low plasma NEFA levels fasted rats and pharmacologically induced high plasma NEFA levels fed rats. The participation of Akt and glycogen synthase kinase-3 (GSK-3) in the changes observed was investigated. Plasma levels of NEFA, glucose, and insulin were determined in all conditions. Fasting increased plasma NEFA levels and reduced glycogen content in the liver and skeletal muscles. However, an increase of glycogen content was observed in the heart under this condition. Akt and GSK-3 phosphorylation was reduced during fasting in the liver and skeletal muscles but it remained unchanged in the heart. Our results suggest that in conditions of increased plasma NEFA levels, changes in insulin-stimulated phosphorylation of Akt and GSK-3 and glycogen content vary differently in liver, skeletal muscles, and heart. Akt and GSK-3 phosphorylation and glycogen content are decreased in liver and skeletal Muscles, but in the heart it remain unchanged (Akt and GSK-3 phosphorylation) or increased (glycogen content) due to consistent increase of plasma NEFA levels. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have previously shown that pathogenic leptospiral strains are able to bind C4b binding protein (C4BP). Surface-bound C4BP retains its cofactor activity, indicating that acquisition of this complement regulator may contribute to leptospiral serum resistance. In the present study, the abilities of seven recombinant putative leptospiral outer membrane proteins to interact with C4BP were evaluated. The protein encoded by LIC11947 interacted with this human complement regulator in a dose-dependent manner. The cofactor activity of C4BP bound to immobilized recombinant LIC11947 (rLIC11947) was confirmed by detecting factor I-mediated cleavage of C4b. rLIC11947 was therefore named LcpA (for leptospiral complement regulator-acquiring protein A). LcpA was shown to be an outer membrane protein by using immunoelectron microscopy, cell surface proteolysis, and Triton X-114 fractionation. The gene coding for LcpA is conserved among pathogenic leptospiral strains. This is the first characterization of a Leptospira surface protein that binds to the human complement regulator C4BP in a manner that allows this important regulator to control complement system activation mediated either by the classical pathway or by the lectin pathway. This newly identified protein may play a role in immune evasion by Leptospira spp. and may therefore represent a target for the development of a human vaccine against leptospirosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Oligonucleotides have unique molecular recognition properties, being involved in biological mechanisms such as cell-surface receptor recognition or gene silencing. For their use in human therapy for drug or gene delivery, the cell membrane remains a barrier, but this can be obviated by grafting a hydrophobic tail to the oligonucleotide. Here we demonstrate that two oligonucleotides, one consisting of 12 guanosine units (G(12)), and the other one consisting of five adenosine and seven guanosine (A(5)G(7)) units, when functionalized with poly(butadiene), namely PB-G(12) and PB-A(5)G(7), can be inserted into Langmuir monolayers of dipalmitoyl phosphatidyl choline (DPPC), which served as a cell membrane model. PB-G(12) and PB-A(5)G(7) were found to affect the DPPC monolayer even at high surface pressures. The effects from PB-G(12) were consistently stronger, particularly in reducing the elasticity of the DPPC monolayers, which may have important biological implications. Multilayers of DPPC and nucleotide-based copolymers could be adsorbed onto solid supports, in the form of Y-type LB films, in which the molecular-level interaction led to lower energies in the vibrational spectra of the nucleotide-based copolymers. This successful deposition of solid films opens the way for devices to be produced which exploit the molecular recognition properties of the nucleotides. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Disease, injury, and age problems compromise human quality of life and continuously motivate the search for new and more efficacious therapeutic approaches. The field of Tissue Regeneration and Engineering has greatly evolved over the last years, mainly due to the combination of the important advances verified in Biomaterials Science and Engineering with those of Cell and Molecular Biology. In particular, a new and promising area arose – Nanomedicine – that takes advantage of the extremely small size and especial chemical and physical properties of Nanomaterials, offering powerful tools for health improvement. Research on Stem Cells, the self-renewing progenitors of body tissues, is also challenging to the medical and scientific communities, being expectable the appearance of new and exciting stem cell-based therapies in the next years. The control of cell behavior (namely, of cell proliferation and differentiation) is of key importance in devising strategies for Tissue Regeneration and Engineering. Cytokines, growth factors, transcription factors and other signaling molecules, most of them proteins, have been identified and found to regulate and support tissue development and regeneration. However, the application of these molecules in long-term regenerative processes requires their continuous presence at high concentrations as they usually present short half-lives at physiological conditions and may be rapidly cleared from the body. Alternatively, genes encoding such proteins can be introduced inside cells and be expressed using cell’s machinery, allowing an extended and more sustained production of the protein of interest (gene therapy). Genetic engineering of stem cells is particularly attractive because of their self-renewal capability and differentiation potential. For Tissue Regeneration and Engineering purposes, the patient’s own stem cells can be genetically engineered in vitro and, after, introduced in the body (with or without a scaffold) where they will not only modulate the behavior of native cells (stem cell-mediated gene therapy), but also directly participate in tissue repair. Cells can be genetically engineered using viral and non-viral systems. Viruses, as a result of millions of years of evolution, are very effective for the delivery of genes in several types of cells, including cells from primary sources. However, the risks associated with their use (like infection and immunogenic reactions) are driving the search for non-viral systems that will efficiently deliver genetic material into cells. Among them, chemical methods that are promising and being investigated use cationic molecules as carriers for DNA. In this case, gene delivery and gene expression level remain relatively low when primary cells are used. The main goal of this thesis was to develop and assess the in vitro potential of polyamidoamine (PAMAM) dendrimers based carriers to deliver genes to mesenchymal stem cells (MSCs). PAMAM dendrimers are monodispersive, hyperbranched and nanospherical molecules presenting unique characteristics that make them very attractive vehicles for both drug and gene delivery. Although they have been explored for gene delivery in a wide range of cell lines, the interaction and the usefulness of these molecules in the delivery of genes to MSCs remains a field to be explored. Adult MSCs were chosen for the studies due to their potential biomedical applications (they are considered multipotent cells) and because they present several advantages over embryonic stem cells, such as easy accessibility and the inexistence of ethical restrictions to their use. This thesis is divided in 5 interconnected chapters. Chapter I provides an overview of the current literature concerning the various non-viral systems investigated for gene delivery in MSCs. Attention is devoted to physical methods, as well as to chemical methods that make use of polymers (natural and synthetic), liposomes, and inorganic nanoparticles as gene delivery vectors. Also, it summarizes the current applications of genetically engineered mesenchymal stem cells using non-viral systems in regenerative medicine, with special focus on bone tissue regeneration. In Chapter II, the potential of native PAMAM dendrimers with amine termini to transfect MSCs is evaluated. The level of transfection achieved with the dendrimers is, in a first step, studied using a plasmid DNA (pDNA) encoding for the β-galactosidase reporter gene. The effect of dendrimer’s generation, cell passage number, and N:P ratio (where N= number of primary amines in the dendrimer; P= number of phosphate groups in the pDNA backbone) on the level of transfection is evaluated, being the values always very low. In a second step, a pDNA encoding for bone morphogenetic protein-2, a protein that is known for its role in MSCs proliferation and differentiation, is used. The BMP-2 content produced by transfected cells is evaluated by an ELISA assay and its effect on the osteogenic markers is analyzed through several classical assays including alkaline phosphatase activity (an early marker of osteogenesis), osteocalcin production, calcium deposition and mineralized nodules formation (late osteogenesis markers). Results show that a low transfection level is enough to induce in vitro osteogenic differentiation in MSCs. Next, from Chapter III to Chapter V, studies are shown where several strategies are adopted to change the interaction of PAMAM dendrimers with MSCs cell membrane and, as a consequence, to enhance the levels of gene delivery. In Chapter III, generations 5 and 6 of PAMAM dendrimers are surface functionalized with arginine-glycine-aspartic acid (RGD) containing peptides – experiments with dendrimers conjugated to 4, 8 and 16 RGD units were performed. The underlying concept is that by including the RGD integrin-binding motif in the design of the vectors and by forming RGD clusters, the level of transfection will increase as MSCs highly express integrins at their surface. Results show that cellular uptake of functionalized dendrimers and gene expression is enhanced in comparison with the native dendrimers. Furthermore, gene expression is dependent on both the electrostatic interaction established between the dendrimer moiety and the cell surface and the nanocluster RGD density. In Chapter IV, a new family of gene delivery vectors is synthesized consisting of a PAMAM dendrimer (generation 5) core randomly linked at the periphery to alkyl hydrophobic chains that vary in length and number. Herein, the idea is to take advantage of both the cationic nature of the dendrimer and the capacity of lipids to interact with biological membranes. These new vectors show a remarkable capacity for internalizing pDNA, being this effect positively correlated with the –CH2– content present in the hydrophobic corona. Gene expression is also greatly enhanced using the new vectors but, in this case, the higher efficiency is shown by the vectors containing the smallest hydrophobic chains. Finally, chapter V reports the synthesis, characterization and evaluation of novel gene delivery vectors based on PAMAM dendrimers (generation 5) conjugated to peptides with high affinity for MSCs membrane binding - for comparison, experiments are also done with a peptide with low affinity binding properties. These systems present low cytotoxicity and transfection efficiencies superior to those of native dendrimers and partially degraded dendrimers (Superfect®, a commercial product). Furthermore, with this biomimetic approach, the process of gene delivery is shown to be cell surface receptor-mediated. Overall, results show the potential of PAMAM dendrimers to be used, as such or modified, in Tissue Regeneration and Engineering. To our knowledge, this is the first time that PAMAM dendrimers are studied as gene delivery vehicles in this context and using, as target, a cell type with clinical relevancy. It is shown that the cationic nature of PAMAM dendrimers with amine termini can be synergistically combined with surface engineering approaches, which will ultimately result in suitable interactions with the cytoplasmic membrane and enhanced pDNA cellular entry and gene expression. Nevertheless, the quantity of pDNA detected inside cell nucleus is always very small when compared with the bigger amount reaching cytoplasm (accumulation of pDNA is evident in the perinuclear region), suggesting that the main barrier to transfection is the nuclear membrane. Future work can then be envisaged based on the versatility of these systems as biomedical molecular materials, such as the conjugation of PAMAM dendrimers to molecules able to bind nuclear membrane receptors and to promote nuclear translocation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)