999 resultados para Carbonate ion
Resumo:
The growth rate of Acropora cervicornis branch tips maintained in the laboratory was measured before, during, and after exposure to elevated nitrate (5 and 10 µM NO3-), phosphate (2 and 4 µM P-PO43) and/or pCO2 (CO2 ~700 to 800 µatm). The effect of increased pCO2 was greater than that of nutrient enrichment alone. High concentrations of nitrate or phosphate resulted in significant decreases in growth rate, in both the presence and absence of increased pCO2. The effect of nitrate and phosphate enrichment combined was additive or antagonistic relative to nutrient concentration and pCO2 level. Growth rate recovery was greater after exposure to increased nutrients or CO2 compared to increased nutrients and CO2. If these results accurately predict coral response in the natural environment, it is reasonable to speculate that the survival and reef-building potential of this species will be significantly negatively impacted by continued coastal nutrification and projected pCO2 increases.
Resumo:
This data was collected during the 'ICE CHASER' cruise from the southern North Sea to the Arctic (Svalbard) in July-Aug 2008. This data consists of coccolithophore abundance, calcification and primary production rates, carbonate chemistry parameters and ancillary data of macronutrients, chlorophyll-a, average mixed layer irradiance, daily irradiance above the sea surface, euphotic and mixed layer depth, temperature and salinity.
Resumo:
Marine organisms inhabiting environments where pCO2/pH varies naturally are suggested to be relatively resilient to future ocean acidification. To test this hypothesis, the effect of elevated pCO2 was investigated in the articulated coralline red alga Corallina elongata from an intertidal rock pool on the north coast of Brittany (France), where pCO2 naturally varied daily between 70 and 1000 µatm. Metabolism was measured on algae in the laboratory after they had been grown for 3 weeks at pCO2 concentrations of 380, 550, 750 and 1000 µatm. Net and gross primary production, respiration and calcification rates were assessed by measurements of oxygen and total alkalinity fluxes using incubation chambers in the light and dark. Calcite mol % Mg/Ca (mMg/Ca) was analysed in the tips, branches and basal parts of the fronds, as well as in new skeletal structures produced by the algae in the different pCO2 treatments. Respiration, gross primary production and calcification in light and dark were not significantly affected by increased pCO2. Algae grown under elevated pCO2 (550, 750 and 1000 µatm) formed fewer new structures and produced calcite with a lower mMg/Ca ratio relative to those grown under 380 µatm. This study supports the assumption that C. elongata from a tidal pool, where pCO2 fluctuates over diel and seasonal cycles, is relatively robust to elevated pCO2 compared to other recently investigated coralline algae.
Resumo:
Biological mediation of carbonate dissolution represents a fundamental component of the destructive forces acting on coral reef ecosystems. Whereas ocean acidification can increase dissolution of carbonate substrates, the combined impact of ocean acidification and warming on the microbioerosion of coral skeletons remains unknown. Here, we exposed skeletons of the reef-building corals, Porites cylindrica and Isopora cuneata, to present-day (Control: 400 µatm - 24 °C) and future pCO2-temperature scenarios projected for the end of the century (Medium: +230 µatm - +2 °C; High: +610 µatm - +4 °C). Skeletons were also subjected to permanent darkness with initial sodium hypochlorite incubation, and natural light without sodium hypochlorite incubation to isolate the environmental effect of acidic seawater (i.e., Omega aragonite <1) from the biological effect of photosynthetic microborers. Our results indicated that skeletal dissolution is predominantly driven by photosynthetic microborers, as samples held in the dark did not decalcify. In contrast, dissolution of skeletons exposed to light increased under elevated pCO2-temperature scenarios, with P. cylindrica experiencing higher dissolution rates per month (89%) than I. cuneata (46%) in the high treatment relative to control. The effects of future pCO2-temperature scenarios on the structure of endolithic communities were only identified in P. cylindrica and were mostly associated with a higher abundance of the green algae Ostreobium spp. Enhanced skeletal dissolution was also associated with increased endolithic biomass and respiration under elevated pCO2-temperature scenarios. Our results suggest that future projections of ocean acidification and warming will lead to increased rates of microbioerosion. However, the magnitude of bioerosion responses may depend on the structural properties of coral skeletons, with a range of implications for reef carbonate losses under warmer and more acidic oceans.
Resumo:
Community metabolism was investigated using a Lagrangian flow respirometry technique on 2 reef flats at Moorea (French Polynesia) during austral winter and Yonge Reef (Great Barrier Reef) during austral summer. The data were used to estimate related air-sea CO2 disequilibrium. A sine function did not satisfactorily model the diel light curves and overestimated the metabolic parameters. The ranges of community gross primary production and respiration (Pg and R; 9 to 15 g C m-2 d-1) were within the range previously reported for reef flats, and community net calcification (G; 19 to 25 g CaCO3 m-2 d-1) was higher than the 'standard' range. The molar ratio of organic to inorganic carbon uptake was 6:1 for both sites. The reef flat at Moorea displayed a higher rate of organic production and a lower rate of calcification compared to previous measurements carried out during austral summer. The approximate uncertainty of the daily metabolic parameters was estimated using a procedure based on a Monte Carlo simulation. The standard errors of Pg,R and Pg/R expressed as a percentage of the mean are lower than 3% but are comparatively larger for E, the excess production (6 to 78%). The daily air-sea CO2 flux (FCO2) was positive throughout the field experiments, indicating that the reef flats at Moorea and Yonge Reef released CO2 to the atmosphere at the time of measurement. FCO2 decreased as a function of increasing daily irradiance.
Resumo:
Four strains of the coccolithophore Emiliania huxleyi (RCC1212, RCC1216, RCC1238, RCC1256) were grown in dilute batch culture at four CO2 levels ranging from ~200 µatm to ~1200 µatm. Coccolith morphology was analyzed based on scanning electron micrographs. Three of the four strains did not exhibit a change in morphology over the CO2 range tested. One strain (RCC1256) displayed an increase in the percentage of malformed coccoliths with increasing CO2 concentration. We conclude that the sensitivity of the coccolith-shaping machinery to carbonate chemistry changes is strain-specific. Although it has been shown before that carbonate chemistry related changes in growth- and calcification rate are strain-specific, there seems to be no consistent correlation between coccolith morphology and growth or calcification rate. We did not observe an increase in the percentage of incomplete coccoliths in RCC1256, indicating that the coccolith-shaping machinery per se is affected by acidification and not the signalling pathway that produces the stop-signal for coccolith growth.
Resumo:
Manipulative studies have demonstrated that ocean acidification (OA) is a threat to coral reefs, yet no experiments have employed diurnal variations in pCO2 that are ecologically relevant to many shallow reefs. Two experiments were conducted to test the response of coral recruits (less than 6 days old) to diurnally oscillating pCO2; one exposing recruits for 3 days to ambient (440 µatm), high (663 µatm) and diurnally oscillating pCO2 on a natural phase (420-596 µatm), and another exposing recruits for 6 days to ambient (456 µatm), high (837 µatm) and diurnally oscillating pCO2 on either a natural or a reverse phase (448-845 µatm). In experiment I, recruits exposed to natural-phased diurnally oscillating pCO2 grew 6-19% larger than those in ambient or high pCO2. In experiment II, recruits in both high and natural-phased diurnally oscillating pCO2 grew 16 per cent larger than those at ambient pCO2, and this was accompanied by 13-18% higher survivorship; the stimulatory effect on growth of oscillatory pCO2 was diminished by administering high pCO2 during the day (i.e. reverse-phased). These results demonstrate that coral recruits can benefit from ecologically relevant fluctuations in pCO2 and we hypothesize that the mechanism underlying this response is highly pCO2-mediated, night-time storage of dissolved inorganic carbon that fuels daytime calcification.
Resumo:
Ocean acidification is considered a major threat to marine ecosystems and may particularly affect calcifying organisms such as corals, foraminifera and coccolithophores. Here we investigate the impact of elevated pCO2 and lowered pH on growth and calcification in the common calcareous dinoflagellate Thoracosphaera heimii. We observe a substantial reduction in growth rate, calcification and cyst stability of T. heimii under elevated pCO2. Furthermore, transcriptomic analyses reveal CO2 sensitive regulation of many genes, particularly those being associated to inorganic carbon acquisition and calcification. Stable carbon isotope fractionation for organic carbon production increased with increasing pCO2 whereas it decreased for calcification, which suggests interdependence between both processes. We also found a strong effect of pCO2 on the stable oxygen isotopic composition of calcite, in line with earlier observations concerning another T. heimii strain. The observed changes in stable oxygen and carbon isotope composition of T. heimii cysts may provide an ideal tool for reconstructing past seawater carbonate chemistry, and ultimately past pCO2. Although the function of calcification in T. heimii remains unresolved, this trait likely plays an important role in the ecological and evolutionary success of this species. Acting on calcification as well as growth, ocean acidification may therefore impose a great threat for T. heimii.
Resumo:
Reduction in global ocean pH due to the uptake of increased atmospheric CO2 is expected to negatively affect calcifying organisms, including the planktonic larval stages of many marine invertebrates. Planktonic larvae play crucial roles in the benthic-pelagic life cycle of marine organisms by connecting and sustaining existing populations and colonizing new habitats. Calcified larvae are typically denser than seawater and rely on swimming to navigate vertically structured water columns. Larval sand dollars Dendraster excentricus have calcified skeletal rods supporting their bodies, and propel themselves with ciliated bands looped around projections called arms. Ciliated bands are also used in food capture, and filtration rate is correlated with band length. As a result, swimming and feeding performance are highly sensitive to morphological changes. When reared at an elevated PCO2 level (1000 ppm), larval sand dollars developed significantly narrower bodies at four and six-arm stages. Morphological changes also varied between four observed maternal lineages, suggesting within-population variation in sensitivity to changes in PCO2 level. Despite these morphological changes, PCO2 concentration alone had no significant effect on swimming speeds. However, acidified larvae had significantly smaller larval stomachs and bodies, suggesting reduced feeding performance. Adjustments to larval morphologies in response to ocean acidification may prioritize swimming over feeding, implying that negative consequences of ocean acidification are carried over to later developmental stages.
Resumo:
About 30% of the anthropogenically released CO2 is taken up by the oceans; such uptake causes surface ocean pH to decrease and is commonly referred to as ocean acidification (OA). Foraminifera are one of the most abundant groups of marine calcifiers, estimated to precipitate ca. 50 % of biogenic calcium carbonate in the open oceans. We have compiled the state of the art literature on OA effects on foraminifera, because the majority of OA research on this group was published within the last three years. Disparate responses of this important group of marine calcifiers to OA were reported, highlighting the importance of a process-based understanding of OA effects on foraminifera. We cultured the benthic foraminifer Ammonia sp. under a range of carbonate chemistry manipulation treatments to identify the parameter of the carbonate system causing the observed effects. This parameter identification is the first step towards a process-based understanding. We argue that CO3 is the parameter affecting foraminiferal size-normalized weights (SNWs) and growth rates. Based on the presented data, we can confirm the strong potential of Ammonia sp. foraminiferal SNW as a CO3 proxy.
Resumo:
This study includes the first information on the combined effect of low pH and raised temperature on egg production rate (EP), hatching success (HS), excretion and respiration of the Mediterranean copepod Acartia clausi. Adult individuals of A. clausi and fresh surface seawater were collected at a coastal station in Saronikos Gulf during April 2012. Four different conditions were applied: two different pH levels (present: 8.09 and future: 7.83) at two temperature values (present: 16°C and present+4 °C= 20°C). EP and HS success decreased significantly over the duration of exposure at future pH at both temperature conditions. However, the analysis of the combined effect of pH, T, chlorophyll a and the duration of the experiments on EP and HS revealed that ocean acidification had no discernible effect, whereas warming; food and the duration of exposure were more significant for the reproductive output of A. clausi. Temperature appeared to have a positive effect on respiration and excretion. Acidification had no clear effect on respiration, but a negative effect on the A. clausi excretion was observed. Acidification and warming resulted in the increase of the excretion rate and the increase was higher than that observed by warming only. Our findings showed that a direct effect of ocean acidification on copepod's vital rates was not obvious, except maybe in the case of excretion. Therefore, the combination of acidification with the ambient oligotrophic conditions and the warming could result in species being less able to allocate resources for coping with multiple stressors.
Resumo:
Recent studies on the diazotrophic cyanobacterium Trichodesmium erythraeum(IMS101) showed that increasing CO2 partial pressure (pCO2) enhances N2 fixation and growth. Significant uncertainties remain as to the degree of the sensitivity to pCO2, its modification by other environmental factors, and underlying processes causing these responses. To address these questions, we examined the responses ofTrichodesmium IMS101 grown under a matrix of low and high levels of pCO2 (150 and 900 µatm) and irradiance (50 and 200 µmol photons m-2 s-1). Growth rates as well as cellular carbon and nitrogen contents increased with increasing pCO2 and light levels in the cultures. The pCO2-dependent stimulation in organic carbon and nitrogen production was highest under low light. High pCO2 stimulated rates of N2fixation and prolonged the duration, while high light affected maximum rates only. Gross photosynthesis increased with light but did not change with pCO2. HCO3- was identified as the predominant carbon source taken up in all treatments. Inorganic carbon uptake increased with light, but only gross CO2 uptake was enhanced under high pCO2. A comparison between carbon fluxes in vivo and those derived from 13C fractionation indicates high internal carbon cycling, especially in the low-pCO2treatment under high light. Light-dependent oxygen uptake was only detected underlow pCO2 combined with high light or when low-light-acclimated cells were exposed to high light, indicating that the Mehler reaction functions also as a photoprotective mechanism in Trichodesmium. Our data confirm the pronounced pCO2 effect on N2fixation and growth in Trichodesmium and further show a strong modulation of these effects by light intensity. We attribute these responses to changes in the allocation of photosynthetic energy between carbon acquisition and the assimilation of carbon and nitrogen under elevated pCO2. These findings are supported by a complementarystudy looking at photosynthetic fluorescence parameters of photosystem II, photosynthetic unit stoichiometry (photosystem I:photosystem II), and pool sizes of key proteins in carbon and nitrogen acquisition.