984 resultados para Cape Mondego


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Particles sinking out of the euphotic zone are important vehicles of carbon export from the surface ocean. Most of the particles produce heavier aggregates by coagulating with each other before they sink. We implemented an aggregation model into the biogeochemical model of Regional Oceanic Modelling System (ROMS) to simulate the distribution of particles in the water column and their downward transport in the Northwest African upwelling region. Accompanying settling chamber, sediment trap and particle camera measurements provide data for model validation. In situ aggregate settling velocities measured by the settling chamber were around 55 m d**-1. Aggregate sizes recorded by the particle camera hardly exceeded 1 mm. The model is based on a continuous size spectrum of aggregates, characterised by the prognostic aggregate mass and aggregate number concentration. Phytoplankton and detritus make up the aggregation pool, which has an averaged, prognostic and size dependent sinking. Model experiments were performed with dense and porous approximations of aggregates with varying maximum aggregate size and stickiness as well as with the inclusion of a disaggregation term. Similar surface productivity in all experiments has been generated in order to find the best combination of parameters that produce measured deep water fluxes. Although the experiments failed to represent surface particle number spectra, in the deep water some of them gave very similar slope and spectrum range as the particle camera observations. Particle fluxes at the mesotrophic sediment trap site off Cape Blanc (CB) have been successfully reproduced by the porous experiment with disaggregation term when particle remineralisation rate was 0.2 d**-1. The aggregation-disaggregation model improves the prediction capability of the original biogeochemical model significantly by giving much better estimates of fluxes for both upper and lower trap. The results also point to the need for more studies to enhance our knowledge on particle decay and its variation and to the role that stickiness play in the distribution of vertical fluxes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 5-year sediment trap survey in the upwelling area off Cape Blanc (NW Africa) provides information on the seasonal and annual resting cyst production of dinoflagellates, their sinking characteristics and preservation potential. Strong annual variation in cyst production characterizes the region. Cyst production of generally all investigated species, including Alexandrium pseudogonyaulax (Biecheler) T. Horig. ex T. Kita et Fukuyo (cyst genus Impagidinium) and Gonyaulax spinifera (Clap. et J. Lachm.) Diesing (cyst genus Nematosphaeropsis) was enhanced with increasing upper water nutrient and trace-element concentrations. Cyst production of Lingulodinium polyedrum (F. Stein) J. D. Dodge was the highest at the transition between upwelling and upwelling-relaxation. Cyst production of Protoperidinium americanum (Gran et Braarud) Balech, Protoperidinium monospinum (Paulsen) K. A. F. Zonn. et B. Dale, and Protoperidinium stellatum (D. Wall) Balech, and heterotrophic dinoflagellates forming Brigantedinium spp. and Echinidinium aculeatum Zonn., increased most pronouncedly during upwelling episodes. Production of Protoperidinium conicum (Gran) Balech and Protoperidinium pentagonum (Gran) Balech cysts and total diatom valves were related, providing evidence of a predator-prey relationship. The export cyst-flux of E. aculeatum, P. americanum, P. monospinum, and P. stellatum was strongly linked to the flux of total diatom valves and CaCO3, whereas the export production of Echinidinium granulatum Zonn. and Protoperidinium subinerme (Paulsen) A. R. Loebl. correlated with total organic carbon, suggesting potential consumption of diatoms, prymnesiophytes, and organic matter, respectively. Sinking velocities were at least 274 m · d**-1, which is in range of the diatom- and coccolith-based phytoplankton aggregates and "slower" fecal pellets. Species-selective degradation did not occur in the water column, but on the ocean floor.