947 resultados para CROSS FLOW HEAT EXCHANGERS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single phase solutions containing three components have been observed to exhibit foaminess near a single to two liquid phase boundary. It was seen, in a sintered plate column under mass transfer conditions, that distillation systems where the liquid appeared as one phase in one part of a column and two phases in another part, exhibited foaminess when the liquid concentration was near the one phase to two phase boundary. Various ternary systems have been studied in a 50 plate. 30mm i.d. Oldershaw column and it was observed that severe foaming occurred in the middle section of the column near the one liquid phase to two liquid phase boundary and no foaming occurred at the end of the column where liquid was either one phase or two phase. This is known as Ross type foam. Mass transfer experiments with Ross type ternary systems have been carried out in a perspex simulator with small and large hole diameter trays. It was observed that by removal of the more volatile component, Ross type foam did not build up on the tray. Severe entrainment of liquid was observed in all cases leading to a 'dry' tray, even with a low free area small diameter hole tray which was expected to produce a bubbly mixture. Entrainment was more severe for high gas superficial velocities and large hole diameters. This behaviour is quite different from the build up of foam observed when one liquid phase/two liquid phase Ross systems were contacted with air above a small sintered disc or with vapour in an Oldershaw distillation column. This observation explains why distillation columns processing mixtures which change from one liquid phase to two liquid phases (or vice versa) must be severely derated to avoid flooding. Single liquid phase holdups at the spray to bubbly transition were measured using a perspex simulator similar to that of Porter & Wong (17). i.e. with no liquid cross flow. A light transmission technique was used to measure the transition from spray regime to bubbly regime. The effect of tray thickness and the ratio of hole diameter to tray thickness on the transition was evaluated using trays of the same hole diameter and free area but having thickness of 2.38 mm, 4 mm, and 6.35 mm. The liquid holdup at the transition was less with the thin metal trays. This result may be interpreted by the theory of Lockett (101), which predicts the transition liquid holdup in terms of the angle of the gas iet leaving the holes in the sieve plate. All the existing correlations have been compared and none were found to be satisfactory and these correlations have been modified in view of the experimental results obtained. A new correlation has been proposed which takes into account the effect of the hole diameter to tray thickness ratio on the transition and good agreement was obtained between the experimental results and the correlated values of the liquid holdup at the transition. Results have been obtained for two immiscible liquids [kerosene and water] on trays to determine whether foaming can be eliminated by operating in the spray regime. Kerosene was added to a fixed volume of water or water was added to a fixed volume of kerosene. In both cases, there was a transition from spray to bubbly. In the water fixed system. the liquid holdup at the transition was slightly less than the pure kerosene system. Whilst for the kerosene fixed system, the transition occurred at much lower liquid holdups. Trends In the results were similar to those for single liquid phase. New correlations have been proposed for the two cases. It has been found that Ross type foams, observed in a sintered plate column and in the Oldershaw column can be eliminated by either carrying out the separation in a packed column or by the addition of defoaming additives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liquid desiccant systems are of potential interest as a means of cooling greenhouses to temperatures below those achieved by conventional means. However, only very little work has been done on this technology with previous workers focussing on the cooling of human dwellings using expensive desiccants such as lithium salts. In this study we are designing a system for greenhouse cooling based on magnesium chloride desiccant which is an abundant and non-toxic substance. Magnesium chloride is found in seawater, for example, and is a by-product from solar salt works. We have carried out a detailed experimental study of the relevant properties of magnesium rich solutions. In addition we have constructed a test rig that includes the main components of the cooling system, namely a dehumidifier and solar regenerator. The dehumidifier is a cross-flow device that consists of a structured packing made of corrugated cellulose paper sheets with different flute angles and embedded cooling tubes. The regenerator is of the open type with insulated backing and fabric covering to spread the flow of desiccant solution. Alongside these experiments we are developing a mathematical model in gPROMS® that combines and simulates the heat and mass transfer processes in these components. The model can be applied to various geographical locations. Here we report predictions for Havana (Cuba) and Manila (Philippines), where we find that average wet-bulb temperatures can be lowered by 2.2 and 3°C, respectively, during the month of May.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To study the dissipation of heat generated due to the formation of pinholes that cause local hotspots in the catalyst layer of the Polymer Electrolyte Fuel Cell, a two-phase non-isothermal model has been developed by coupling Darcy’s law with heat transport. The domain under consideration is a section of the membrane electrode assembly with a half-channel and a half-rib. Five potential locations where a pinhole might form were analyzed: at the midplane of the channel, midway between the channel midplane and the channel wall, at the channel or rib wall, midway between the rib midplane and the channel wall, at the midplane of the rib. In the first part of this work, a preliminary thermal model was developed. The model was then refined to account for the two-phase effects. A sensitivity study was done to evaluate the effect of the following properties on the maximum temperature in the domain: Catalyst layer thermal conductivity, the Microporous layer thermal conductivity, the anisotropy factor of the Catalyst layer thermal conductivity, the Porous transport layer porosity, the liquid water distribution and the thickness of the membrane and porous layers. Accounting for the two-phase effects, a slight cooling effect was observed across all hotspot locations. The thermal properties of the catalyst layer were shown to have a limited impact on the maximum temperature in the catalyst layer of new fuel cells without pinhole. However, as hotspots start to appear, thermal properties play a more significant role in mitigating the thermal runaway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The PolySMART demonstration system SP1b has been modeled in TRNSYS and calibrated against monitored data. The system is an example of distributed cooling with centralized CHP, where the driving heat is delivered via the district heating network. The system pre-cools the cooling water for the head office of Borlänge municipality, for which the main cooling is supplied by a 200 kW compression chiller. The SP1b system thus provides pre-cooling. It consists of ClimateWell TDC with nominal capacity of 10 kW together with a dry cooler for recooling and heat exchangers in the cooling and driving circuits. The cooling system is only operated from 06:00 to 17:00 during working days, and the cooling season is generally from mid May to mid September. The nominal operating conditions of the main chiller are 12/15°C. The main aims of this simulation study were to: reduce the electricity consumption, and if possible to improve the thermal COP and capacity at the same time; and to study how the system would perform with different boundary conditions such as climate and load. The calibration of the system model was made in three stages: estimation of parameters based on manufacturer data and dimensions of the system; calibration of each circuit (pipes and heat exchangers) separately using steady state point; and finally calibration of the complete model in terms of thermal and electrical energy as well as running times, for a five day time series of data with one minute average data values. All the performance figures were with 3% of the measured values apart from the running time for the driving circuit that was 4% different. However, the performance figures for this base case system for the complete cooling season of mid-May to midSeptember were significantly better than those for the monitoring data. This was attributed to long periods when the monitored system was not in operation and due to a control parameter that hindered cold delivery at certain times. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal casting is a process governed by the interaction of a range of physical phenomena. Most computational models of this process address only what are conventionally regarded as the primary phenomena – heat conduction and solidification. However, to predict other phenomena, such as porosity formation, requires modelling the interaction of the fluid flow, heat transfer, solidification and the development of stressdeformation in the solidified part of the casting. This paper will describe a modelling framework called PHYSICA[1] which has the capability to stimulate such multiphysical phenomena.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The value of integrating a heat storage into a geothermal district heating system has been investigated. The behaviour of the system under a novel operational strategy has been simulated focusing on the energetic, economic and environmental effects of the new strategy of incorporation of the heat storage within the system. A typical geothermal district heating system consists of several production wells, a system of pipelines for the transportation of the hot water to end-users, one or more re-injection wells and peak-up devices (usually fossil-fuel boilers). Traditionally in these systems, the production wells change their production rate throughout the day according to heat demand, and if their maximum capacity is exceeded the peak-up devices are used to meet the balance of the heat demand. In this study, it is proposed to maintain a constant geothermal production and add heat storage into the network. Subsequently, hot water will be stored when heat demand is lower than the production and the stored hot water will be released into the system to cover the peak demands (or part of these). It is not intended to totally phase-out the peak-up devices, but to decrease their use, as these will often be installed anyway for back-up purposes. Both the integration of a heat storage in such a system as well as the novel operational strategy are the main novelties of this thesis. A robust algorithm for the sizing of these systems has been developed. The main inputs are the geothermal production data, the heat demand data throughout one year or more and the topology of the installation. The outputs are the sizing of the whole system, including the necessary number of production wells, the size of the heat storage and the dimensions of the pipelines amongst others. The results provide several useful insights into the initial design considerations for these systems, emphasizing particularly the importance of heat losses. Simulations are carried out for three different cases of sizing of the installation (small, medium and large) to examine the influence of system scale. In the second phase of work, two algorithms are developed which study in detail the operation of the installation throughout a random day and a whole year, respectively. The first algorithm can be a potentially powerful tool for the operators of the installation, who can know a priori how to operate the installation on a random day given the heat demand. The second algorithm is used to obtain the amount of electricity used by the pumps as well as the amount of fuel used by the peak-up boilers over a whole year. These comprise the main operational costs of the installation and are among the main inputs of the third part of the study. In the third part of the study, an integrated energetic, economic and environmental analysis of the studied installation is carried out together with a comparison with the traditional case. The results show that by implementing heat storage under the novel operational strategy, heat is generated more cheaply as all the financial indices improve, more geothermal energy is utilised and less fuel is used in the peak-up boilers, with subsequent environmental benefits, when compared to the traditional case. Furthermore, it is shown that the most attractive case of sizing is the large one, although the addition of the heat storage most greatly impacts the medium case of sizing. In other words, the geothermal component of the installation should be sized as large as possible. This analysis indicates that the proposed solution is beneficial from energetic, economic, and environmental perspectives. Therefore, it can be stated that the aim of this study is achieved in its full potential. Furthermore, the new models for the sizing, operation and economic/energetic/environmental analyses of these kind of systems can be used with few adaptations for real cases, making the practical applicability of this study evident. Having this study as a starting point, further work could include the integration of these systems with end-user demands, further analysis of component parts of the installation (such as the heat exchangers) and the integration of a heat pump to maximise utilisation of geothermal energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Work performed under contract no. W-7405-Eng.-26."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is a documented energy audit and long term study of energy and water reduction in a ghee factory. Global production of ghee exceeds 4 million tonnes annually. The factory in this study refines dairy products by non-traditional centrifugal separation and produces 99.9% pure, canned, crystallised Anhydrous Milk Fat (Ghee). Ghee is traditionally made by batch processing methods. The traditional method is less efficient, than centrifugal separation. An in depth systematic investigation was conducted of each item of major equipment including; ammonia refrigeration, a steam boiler, canning equipment, pumps, heat exchangers and compressed air were all fine-tuned. Continuous monitoring of electrical usage showed that not every initiative worked, others had pay back periods of less than a year. In 1994-95 energy consumption was 6,582GJ and in 2003-04 it was 5,552GJ down 16% for a similar output. A significant reduction in water usage was achieved by reducing the airflow in the refrigeration evaporative condensers to match the refrigeration load. Water usage has fallen 68% from18ML in 1994-95 to 5.78ML in 2003-04. The methods reported in this thesis could be applied to other industries, which have similar equipment, and other ghee manufacturers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Defibrillator is a 16’41” musical work for solo performer, laptop computer and electric guitar. The electric guitar is processed in real-time by digital signal processing network in software, with gestural control provided by a foot-operated pedal board. --------- The work is informed by a range of ideas from the genres of electroacoustic music, western art music, popular music and cinematic sound. It seeks to fluidly cross and hybridise musical practices from these diverse sonic traditions and to develop a compositional language that draws upon multiple genres, but at the same time resists the ability to be located within a singular genre. Musical structures and sonic markers which form genre are ruptured at strategic levels of the musical structure in order to allow for a cross flow of concepts between genres. The process of rupture is facilitated by the practical implementation of music and sound reception theories into the compositional process. -------- The piece exhibits the by-products of a composer born into a media saturated environment, drawing on a range of musical and sonic traditions, actively seeking to explore the liminal space in between these traditions. The project stems from the author's research interests in locating points of connection between traditions of experimentation in diverse musical and sonic traditions arising from the broad uptake of media technologies in the early 20th century.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To date, the formation of deposits on heat exchanger surfaces is the least understood problem in the design of heat exchangers for processing industries. Dr East has related the structure of the deposits to solution composition and has developed predictive models for composite fouling of calcium oxalate and silica in sugar factory evaporators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Developments in evaporator cleaning have accelerated in the past 10 years as a result of an extended period of research into scale formation and scale composition. Chemical cleaning still provides the most cost effective method of cleaning the evaporators. The paper describes a system that was designed to obtain on-line samples of evaporator scale negating the need to open up hot evaporator vessels for scale collection. This system was successfully implemented in a number of evaporators at a sugar mill. This paper also describes a recent experience in a sugar factory in which the cleaning procedure was slightly modified, resulting in effective removal of intractable scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Developments in evaporator cleaning have accelerated in the past 10 years as a result of an extended period of research into scale formation and scale composition. Chemical cleaning still provides the most cost effective method of cleaning the evaporators. The paper describes a system that was designed to obtain on-line samples of evaporator scale negating the need to open up hot evaporator vessels for scale collection. This system was successfully implemented in a number of evaporators at a sugar mill. This paper also describes a recent experience in a sugar factory in which the cleaning procedure was slightly modified resulting in effective removal of intractable scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a numerical model for understanding particle transport and deposition in metal foam heat exchangers. Two-dimensional steady and unsteady numerical simulations of a standard single row metal foam-wrapped tube bundle are performed for different particle size distributions, i.e. uniform and normal distributions. Effects of different particle sizes and fluid inlet velocities on the overall particle transport inside and outside the foam layer are also investigated. It was noted that the simplification made in the previously-published numerical works in the literature, e.g. uniform particle deposition in the foam, is not necessarily accurate at least for the cases considered here. The results highlight the preferential particle deposition areas both along the tube walls and inside the foam using a developed particle deposition likelihood matrix. This likelihood matrix is developed based on three criteria being particle local velocity, time spent in the foam, and volume fraction. It was noted that the particles tend to deposit near both front and rear stagnation points. The former is explained by the higher momentum and direct exposure of the particles to the foam while the latter only accommodate small particles which can be entrained in the recirculation region formed behind the foam-wrapped tubes.