980 resultados para CROP LOSS MODELS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivated by new and innovative rental business models, this paper develops a novel discrete-time model of a rental operation with random loss of inventory due to customer use. The inventory level is chosen before the start of a finite rental season, and customers not immediately served are lost. Our analysis framework uses stochastic comparisons of sample paths to derive structural results that hold under good generality for demands, rental durations, and rental unit lifetimes. Considering different \recirculation" rules | i.e., which rental unit to choose to meet each demand | we prove the concavity of the expected profit function and identify the optimal recirculation rule. A numerical study clarifies when considering rental unit loss and recirculation rules matters most for the inventory decision: Accounting for rental unit loss can increase the expected profit by 7% for a single season and becomes even more important as the time horizon lengthens. We also observe that the optimal inventory level in response to increasing loss probability is non-monotonic. Finally, we show that choosing the optimal recirculation rule over another simple policy allows more rental units to be profitably added, and the profit-maximizing service level increases by up to 6 percentage points.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Economic losses resulting from disease development can be reduced by accurate and early detection of plant pathogens. Early detection can provide the grower with useful information on optimal crop rotation patterns, varietal selections, appropriate control measures, harvest date and post harvest handling. Classical methods for the isolation of pathogens are commonly used only after disease symptoms. This frequently results in a delay in application of control measures at potentially important periods in crop production. This paper describes the application of both antibody and DNA based systems to monitor infection risk of air and soil borne fungal pathogens and the use of this information with mathematical models describing risk of disease associated with environmental parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current practices in agricultural management involve the application of rules and techniques to ensure high quality and environmentally friendly production. Based on their experience, agricultural technicians and farmers make critical decisions affecting crop growth while considering several interwoven agricultural, technological, environmental, legal and economic factors. In this context, decision support systems and the knowledge models that support them, enable the incorporation of valuable experience into software systems providing support to agricultural technicians to make rapid and effective decisions for efficient crop growth. Pest control is an important issue in agricultural management due to crop yield reductions caused by pests and it involves expert knowledge. This paper presents a formalisation of the pest control problem and the workflow followed by agricultural technicians and farmers in integrated pest management, the crop production strategy that combines different practices for growing healthy crops whilst minimising pesticide use. A generic decision schema for estimating infestation risk of a given pest on a given crop is defined and it acts as a metamodel for the maintenance and extension of the knowledge embedded in a pest management decision support system which is also presented. This software tool has been implemented by integrating a rule-based tool into web-based architecture. Evaluation from validity and usability perspectives concluded that both agricultural technicians and farmers considered it a useful tool in pest control, particularly for training new technicians and inexperienced farmers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Environmental impacts of wind energy facilities increasingly cause concern, a central issue being bats and birds killed by rotor blades. Two approaches have been employed to assess collision rates: carcass searches and surveys of animals prone to collisions. Carcass searches can provide an estimate for the actual number of animals being killed but they offer little information on the relation between collision rates and, for example, weather parameters due to the time of death not being precisely known. In contrast, a density index of animals exposed to collision is sufficient to analyse the parameters influencing the collision rate. However, quantification of the collision rate from animal density indices (e.g. acoustic bat activity or bird migration traffic rates) remains difficult. We combine carcass search data with animal density indices in a mixture model to investigate collision rates. In a simulation study we show that the collision rates estimated by our model were at least as precise as conventional estimates based solely on carcass search data. Furthermore, if certain conditions are met, the model can be used to predict the collision rate from density indices alone, without data from carcass searches. This can reduce the time and effort required to estimate collision rates. We applied the model to bat carcass search data obtained at 30 wind turbines in 15 wind facilities in Germany. We used acoustic bat activity and wind speed as predictors for the collision rate. The model estimates correlated well with conventional estimators. Our model can be used to predict the average collision rate. It enables an analysis of the effect of parameters such as rotor diameter or turbine type on the collision rate. The model can also be used in turbine-specific curtailment algorithms that predict the collision rate and reduce this rate with a minimal loss of energy production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On the national scene, soybean crop occupies a prominent position in cultivated area and volume production, being cultivated largely in the no tillage system. This system, due to the intense traffic of machines and implements on its surface has caused soil compaction problems, which has caused the yield loss of crops. In order to minimize this effect the seeder-drill uses the systems to opening the furrow by shank or the double disc type. The use of the shank has become commonplace for allowing the disruption of the compacted surface layer, however requires greater energy demand and may cause excessive tillage in areas where there is not observed high levels of compaction. Thus, this study aimed to evaluate the effects of furrowers mechanisms and levels of soil compacting on traction requirement by a seeder-drill and on the growing and productivity of soybean in an Oxisol texture clay, in a two growing seasons. The experimental design consisted of randomized blocks with split plots with the main plots composed of four levels of soil compaction (N0 – no tillage without additional compaction, N1, N2 and N3 – no tillage subjected to compaction through two, four and six passes with tractor, respectively) corresponding to densities of soil 1.16, 1.20, 1.22 and 1.26 g cm-3, and subplots by two furrowers mechanisms (shank and double disc) with four replicates. To evaluate the average, maximum and specific traction force requested by the seeder-drill, was used a load cell, with capacity of 50 kN and sensitivity of 2 mV V-1, coupled between the tractor and seeder-drill, whose data are stored in a datalogger system model CR800 of Campbell Scientific. In addition, were evaluated the bulk density, soil mechanical resistance to penetration, sowing depth, depth and groove width, soil area mobilized, emergence speed index, emergence operation, final plant stand, stem diameter, plant height, average number of seeds per pod, weight of 1,000 seeds, number of pods per plant and crop productivity. Data were subjected to analysis of variance, the mean of furrowers were compared by Tukey test (p≤0.05), while for the factor soil compaction, polynomial regression analysis was adopted, selected models by the criterion of greater R2 and significance (p≤0.05) of equation parameters. Regardless of the crop season, penetration resistance increase as soil compaction levels up to around 0.20 m deep, and bulk density influenced the sowing quality parameters, however, did not affect the crop yield. In the first season, there was a higher productivity with the use of the shank type. In the second crop season, the shank demanded greater energetic requirement with the increase of bulk density and opposite situation with the double disc. The locking of sowing lines allow better performance of the shank to break the compacted layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Duchenne muscular dystrophy (DMD) is a neuromuscular disease caused by mutations in the dystrophin gene. DMD is clinically characterized by severe, progressive and irreversible loss of muscle function, in which most patients lose the ability to walk by their early teens and die by their early 20’s. Impaired intracellular calcium (Ca2+) regulation and activation of cell degradation pathways have been proposed as key contributors to DMD disease progression. This dissertation research consists of three studies investigating the role of intracellular Ca2+ in skeletal muscle dysfunction in different mouse models of DMD. Study one evaluated the role of Ca2+-activated enzymes (proteases) that activate protein degradation in excitation-contraction (E-C) coupling failure following repeated contractions in mdx and dystrophin-utrophin null (mdx/utr-/-) mice. Single muscle fibers from mdx/utr-/- mice had greater E-C coupling failure following repeated contractions compared to fibers from mdx mice. Moreover, protease inhibition during these contractions was sufficient to attenuate E-C coupling failure in muscle fibers from both mdx and mdx/utr-/- mice. Study two evaluated the effects of overexpressing the Ca2+ buffering protein sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 1 (SERCA1) in skeletal muscles from mdx and mdx/utr-/- mice. Overall, SERCA1 overexpression decreased muscle damage and protected the muscle from contraction-induced injury in mdx and mdx/utr-/- mice. In study three, the cellular mechanisms underlying the beneficial effects of SERCA1 overexpression in mdx and mdx/utr-/- mice were investigated. SERCA1 overexpression attenuated calpain activation in mdx muscle only, while partially attenuating the degradation of the calpain target desmin in mdx/utr-/- mice. Additionally, SERCA1 overexpression decreased the SERCA-inhibitory protein sarcolipin in mdx muscle but did not alter levels of Ca2+ regulatory proteins (parvalbumin and calsequestrin) in either dystrophic model. Lastly, SERCA1 overexpression blunted the increase in endoplasmic reticulum stress markers Grp78/BiP in mdx mice and C/EBP homologous protein (CHOP) in mdx and mdx/utr-/- mice. Overall, findings from the studies presented in this dissertation provide new insight into the role of Ca2+ in muscle dysfunction and damage in different dystrophic mouse models. Further, these findings support the overall strategy for improving intracellular Ca2+ control for the development of novel therapies for DMD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past decade, systems that extract information from millions of Internet documents have become commonplace. Knowledge graphs -- structured knowledge bases that describe entities, their attributes and the relationships between them -- are a powerful tool for understanding and organizing this vast amount of information. However, a significant obstacle to knowledge graph construction is the unreliability of the extracted information, due to noise and ambiguity in the underlying data or errors made by the extraction system and the complexity of reasoning about the dependencies between these noisy extractions. My dissertation addresses these challenges by exploiting the interdependencies between facts to improve the quality of the knowledge graph in a scalable framework. I introduce a new approach called knowledge graph identification (KGI), which resolves the entities, attributes and relationships in the knowledge graph by incorporating uncertain extractions from multiple sources, entity co-references, and ontological constraints. I define a probability distribution over possible knowledge graphs and infer the most probable knowledge graph using a combination of probabilistic and logical reasoning. Such probabilistic models are frequently dismissed due to scalability concerns, but my implementation of KGI maintains tractable performance on large problems through the use of hinge-loss Markov random fields, which have a convex inference objective. This allows the inference of large knowledge graphs using 4M facts and 20M ground constraints in 2 hours. To further scale the solution, I develop a distributed approach to the KGI problem which runs in parallel across multiple machines, reducing inference time by 90%. Finally, I extend my model to the streaming setting, where a knowledge graph is continuously updated by incorporating newly extracted facts. I devise a general approach for approximately updating inference in convex probabilistic models, and quantify the approximation error by defining and bounding inference regret for online models. Together, my work retains the attractive features of probabilistic models while providing the scalability necessary for large-scale knowledge graph construction. These models have been applied on a number of real-world knowledge graph projects, including the NELL project at Carnegie Mellon and the Google Knowledge Graph.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leafy greens are essential part of a healthy diet. Because of their health benefits, production and consumption of leafy greens has increased considerably in the U.S. in the last few decades. However, leafy greens are also associated with a large number of foodborne disease outbreaks in the last few years. The overall goal of this dissertation was to use the current knowledge of predictive models and available data to understand the growth, survival, and death of enteric pathogens in leafy greens at pre- and post-harvest levels. Temperature plays a major role in the growth and death of bacteria in foods. A growth-death model was developed for Salmonella and Listeria monocytogenes in leafy greens for varying temperature conditions typically encountered during supply chain. The developed growth-death models were validated using experimental dynamic time-temperature profiles available in the literature. Furthermore, these growth-death models for Salmonella and Listeria monocytogenes and a similar model for E. coli O157:H7 were used to predict the growth of these pathogens in leafy greens during transportation without temperature control. Refrigeration of leafy greens meets the purposes of increasing their shelf-life and mitigating the bacterial growth, but at the same time, storage of foods at lower temperature increases the storage cost. Nonlinear programming was used to optimize the storage temperature of leafy greens during supply chain while minimizing the storage cost and maintaining the desired levels of sensory quality and microbial safety. Most of the outbreaks associated with consumption of leafy greens contaminated with E. coli O157:H7 have occurred during July-November in the U.S. A dynamic system model consisting of subsystems and inputs (soil, irrigation, cattle, wildlife, and rainfall) simulating a farm in a major leafy greens producing area in California was developed. The model was simulated incorporating the events of planting, irrigation, harvesting, ground preparation for the new crop, contamination of soil and plants, and survival of E. coli O157:H7. The predictions of this system model are in agreement with the seasonality of outbreaks. This dissertation utilized the growth, survival, and death models of enteric pathogens in leafy greens during production and supply chain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss decoherence in discrete-time quantum walks in terms of a phenomenological model that distinguishes spin and spatial decoherence. We identify the dominating mechanisms that affect quantum-walk experiments realized with neutral atoms walking in an optical lattice. From the measured spatial distributions, we determine with good precision the amount of decoherence per step, which provides a quantitative indication of the quality of our quantum walks. In particular, we find that spin decoherence is the main mechanism responsible for the loss of coherence in our experiment. We also find that the sole observation of ballistic-instead of diffusive-expansion in position space is not a good indicator of the range of coherent delocalization. We provide further physical insight by distinguishing the effects of short- and long-time spin dephasing mechanisms. We introduce the concept of coherence length in the discrete-time quantum walk, which quantifies the range of spatial coherences. Unexpectedly, we find that quasi-stationary dephasing does not modify the local properties of the quantum walk, but instead affects spatial coherences. For a visual representation of decoherence phenomena in phase space, we have developed a formalism based on a discrete analogue of the Wigner function. We show that the effects of spin and spatial decoherence differ dramatically in momentum space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de Mestrado, Engenharia e Gestão de Sistemas de Água, 23 de Junho de 2016, Universidade dos Açores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three types of forecasts of the total Australian production of macadamia nuts (t nut-in-shell) have been produced early each year since 2001. The first is a long-term forecast, based on the expected production from the tree census data held by the Australian Macadamia Society, suitably scaled up for missing data and assumed new plantings each year. These long-term forecasts range out to 10 years in the future, and form a basis for industry and market planning. Secondly, a statistical adjustment (termed the climate-adjusted forecast) is made annually for the coming crop. As the name suggests, climatic influences are the dominant factors in this adjustment process, however, other terms such as bienniality of bearing, prices and orchard aging are also incorporated. Thirdly, industry personnel are surveyed early each year, with their estimates integrated into a growers and pest-scouts forecast. Initially conducted on a 'whole-country' basis, these models are now constructed separately for the six main production regions of Australia, with these being combined for national totals. Ensembles or suites of step-forward regression models using biologically-relevant variables have been the major statistical method adopted, however, developing methodologies such as nearest-neighbour techniques, general additive models and random forests are continually being evaluated in parallel. The overall error rates average 14% for the climate forecasts, and 12% for the growers' forecasts. These compare with 7.8% for USDA almond forecasts (based on extensive early-crop sampling) and 6.8% for coconut forecasts in Sri Lanka. However, our somewhatdisappointing results were mainly due to a series of poor crops attributed to human reasons, which have now been factored into the models. Notably, the 2012 and 2013 forecasts averaged 7.8 and 4.9% errors, respectively. Future models should also show continuing improvement, as more data-years become available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Yield loss in crops is often associated with plant disease or external factors such as environment, water supply and nutrient availability. Improper agricultural practices can also introduce risks into the equation. Herbicide drift can be a combination of improper practices and environmental conditions which can create a potential yield loss. As traditional assessment of plant damage is often imprecise and time consuming, the ability of remote and proximal sensing techniques to monitor various bio-chemical alterations in the plant may offer a faster, non-destructive and reliable approach to predict yield loss caused by herbicide drift. This paper examines the prediction capabilities of partial least squares regression (PLS-R) models for estimating yield. Models were constructed with hyperspectral data of a cotton crop sprayed with three simulated doses of the phenoxy herbicide 2,4-D at three different growth stages. Fibre quality, photosynthesis, conductance, and two main hormones, indole acetic acid (IAA) and abscisic acid (ABA) were also analysed. Except for fibre quality and ABA, Spearman correlations have shown that these variables were highly affected by the chemical. Four PLS-R models for predicting yield were developed according to four timings of data collection: 2, 7, 14 and 28 days after the exposure (DAE). As indicated by the model performance, the analysis revealed that 7 DAE was the best time for data collection purposes (RMSEP = 2.6 and R2 = 0.88), followed by 28 DAE (RMSEP = 3.2 and R2 = 0.84). In summary, the results of this study show that it is possible to accurately predict yield after a simulated herbicide drift of 2,4-D on a cotton crop, through the analysis of hyperspectral data, thereby providing a reliable, effective and non-destructive alternative based on the internal response of the cotton leaves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crop models are simplified mathematical representations of the interacting biological and environmental components of the dynamic soil–plant–environment system. Sorghum crop modeling has evolved in parallel with crop modeling capability in general, since its origins in the 1960s and 1970s. Here we briefly review the trajectory in sorghum crop modeling leading to the development of advanced models. We then (i) overview the structure and function of the sorghum model in the Agricultural Production System sIMulator (APSIM) to exemplify advanced modeling concepts that suit both agronomic and breeding applications, (ii) review an example of use of sorghum modeling in supporting agronomic management decisions, (iii) review an example of the use of sorghum modeling in plant breeding, and (iv) consider implications for future roles of sorghum crop modeling. Modeling and simulation provide an avenue to explore consequences of crop management decision options in situations confronted with risks associated with seasonal climate uncertainties. Here we consider the possibility of manipulating planting configuration and density in sorghum as a means to manipulate the productivity–risk trade-off. A simulation analysis of decision options is presented and avenues for its use with decision-makers discussed. Modeling and simulation also provide opportunities to improve breeding efficiency by either dissecting complex traits to more amenable targets for genetics and breeding, or by trait evaluation via phenotypic prediction in target production regions to help prioritize effort and assess breeding strategies. Here we consider studies on the stay-green trait in sorghum, which confers yield advantage in water-limited situations, to exemplify both aspects. The possible future roles of sorghum modeling in agronomy and breeding are discussed as are opportunities related to their synergistic interaction. The potential to add significant value to the revolution in plant breeding associated with genomic technologies is identified as the new modeling frontier.