959 resultados para CRITICAL LAYER THICKNESS
Resumo:
The effect of radiation on natural convection flow from an isothermal circular cylinder has been investigated numerically in this study. The governing boundary layer equations of motion are transformed into a non-dimensional form and the resulting nonlinear systems of partial differential equations are reduced to convenient boundary layer equations, which are then solved numerically by two distinct efficient methods namely: (i) implicit finite differencemethod or the Keller-Box Method (KBM) and (ii) Straight Forward Finite Difference Method (SFFD). Numerical results are presented by velocity and temperature distribution of the fluid as well as heat transfer characteristics, namely the shearing stress and the local heat transfer rate in terms of the local skin-friction coefficient and the local Nusselt number for a wide range of surface heating parameter and radiation-conduction parameter. Due to the effects of the radiation the skin-friction coefficients as well as the rate of heat transfer increased and consequently the momentum and thermal boundary layer thickness enhanced.
Resumo:
Diabetes is an increasingly prevalent disease worldwide. Providing early management of the complications can prevent morbidity and mortality in this population. Peripheral neuropathy, a significant complication of diabetes, is the major cause of foot ulceration and amputation in diabetes. Delay in attending to complication of the disease contributes to significant medical expenses for diabetic patients and the community. Early structural changes to the neural components of the retina have been demonstrated to occur prior to the clinically visible retinal vasculature complication of diabetic retinopathy. Additionally visual functionloss has been shown to exist before the ophthalmoscopic manifestations of vasculature damage. The purpose of this thesis was to evaluate the relationship between diabetic peripheral neuropathy and both retinal structure and visual function. The key question was whether diabetic peripheral neuropathy is the potential underlying factor responsible for retinal anatomical change and visual functional loss in people with diabetes. This study was conducted on a cohort with type 2 diabetes. Retinal nerve fibre layer thickness was assessed by means of Optical Coherence Tomography (OCT). Visual function was assessed using two different methods; Standard Automated Perimetry (SAP) and flicker perimetry were performed within the central 30 degrees of fixation. The level of diabetic peripheral neuropathy (DPN) was assessed using two techniques - Quantitative Sensory Testing and Neuropathy Disability Score (NDS). These techniques are known to be capable of detecting DPN at very early stages. NDS has also been shown as a gold standard for detecting 'risk of foot ulceration'. Findings reported in this thesis showed that RNFL thickness, particularly in the inferior quadrant, has a significant association with severity of DPN when the condition has been assessed using NDS. More specifically it was observed that inferior RNFL thickness has the ability to differentiate individuals who are at higher risk of foot ulceration from those who are at lower risk, indicating that RNFL thickness can predict late-staged DPN. Investigating the association between RNFL and QST did not show any meaningful interaction, which indicates that RNFL thickness for this cohort was not as predictive of neuropathy status as NDS. In both of these studies, control participants did not have different results from the type 2 cohort who did not DPN suggesting that RNFL thickness is not a marker for diagnosing DPN at early stages. The latter finding also indicated that diabetes per se, is unlikely to affect the RNFL thickness. Visual function as measured by SAP and flicker perimetry was found to be associated with severity of peripheral neuropathy as measured by NDS. These findings were also capable of differentiating individuals at higher risk of foot ulceration; however, visual function also proved not to be a maker for early diagnosis of DPN. It was found that neither SAP, nor flicker sensitivity have meaningful associations with DPN when neuropathy status was measured using QST. Importantly diabetic retinopathy did not explain any of the findings in these experiments. The work described here is valuable as no other research to date has investigated the association between diabetic peripheral neuropathy and either retinal structure or visual function.
Resumo:
A new scaling analysis has been performed for the unsteady natural convection boundary layer under a downward facing inclined plate with uniform heat flux. The development of the thermal or viscous boundary layers may be classified into three distinct stages including a start-up stage, a transitional stage and a steady stage, which can be clearly identified in the analytical as well as numerical results. Earlier scaling shows that the existing scaling laws of the boundary layer thickness, velocity and steady state time scale for the natural convection flow on a heated plate of uniform heat flux provide a very poor prediction of the Prandtl number dependency of the flow. However, those scalings performed very well with Rayleigh number and aspect ratio dependency. In this study, a new Prandtl number scaling has been developed using a triple-layer integral approach for Pr > 1. It is seen that in comparison to the direct numerical simulations, the new scaling performs considerably better than the previous scaling.
Resumo:
Core(polyvinyl neodecanoate-ethylene glycol dimethacrylate)-shell(polyvinyl alcohol) (core (P(VND-EGDMA))-shell(PVA)) microspheres were developed by seeded polymerization with the use of conventional free radical and RAFT/MADIX mediated polymerization. Poly(vinyl pivalate) PVPi was grafted onto microspheres prepared via suspension polymerization of vinylneodecanoate and ethylene glycol dimethacrylate. The amount of grafted polymer was found to be independent from the technique used with conventional free radical polymerization and MADIX polymerization resulting into similar shell thicknesses. Both systems—grafting via free radical polymerization or the MADIX process—were found to follow slightly different kinetics. While the free radical polymerization resulted in a weight gain linear with the monomer consumption in solution the growth in the MADIX controlled system experienced a delay. The core-shell microspheres were obtained by hydrolysis of the poly(vinyl pivalate) surface grafted brushes to form poly(vinyl alcohol). During hydrolysis the microspheres lost a significant amount of weight, consistent with the hydrolysis of 40–70% of all VPi units. Drug loading was found to be independent of the shell layer thickness, suggesting that the drug loading is governed by the amount of bulk material. The shell layer does not appear to represent an obstacle to the drug ingress. Cell testing using colorectal cancer cell lines HT 29 confirm the biocompatibility of the empty microspheres whereas the clofazimine loaded particles lead to 50% cell death, confirming the release of the drug.
Resumo:
A new scaling analysis has been performed for the unsteady natural convection boundary layer under a downward facing inclined plate with uniform heat flux. The development of the thermal or viscous boundary layers may be classified into three distinct stages including an early stage, a transitional stage and a steady stage, which can be clearly identified in the analytical as well as numerical results. Earlier scaling shows that the existing scaling laws of the boundary layer thickness, velocity and steady state time scales for the natural convection flow on a heated plate of uniform heat flux provide a very poor prediction of the Prandtl number dependency. However, those scalings performed very well with Rayleigh number and aspect ratio dependency. In this study, a modifed Prandtl number scaling has been developed using a triple-layer integral approach for Pr > 1. It is seen that in comparison to the direct numerical simulations, the new scaling performs considerably better than the previous scaling.
Resumo:
Numerically investigation of natural convection within a differentially heated modified square enclosure with sinusoidally corrugated side walls has been performed for different values of Rayleigh number. The fluid inside the enclosure considered is air and is quiescent, initially. The top and bottom surfaces are flat and considered as adiabatic. Results reveal three main stages: an initial stage, a transitory or oscillatory stage and a steady stage for the development of natural convection flow inside the corrugated cavity. The numerical scheme is based on the finite element method adapted to triangular non-uniform mesh element by a non-linear parametric solution algorithm. Investigation has been performed for the Rayleigh number, Ra ranging from 105 to 108 with variation of corrugation amplitude and frequency. Constant physical properties for the fluid medium have been assumed. Results have been presented in terms of the isotherms, streamlines, temperature plots, average Nusselt numbers, traveling waves and thermal boundary layer thickness plots, temperature and velocity profiles. The effects of sudden differential heating and its consequent transient behavior on fluid flow and heat transfer characteristics have been observed for the range of governing parameters. The present results show that the transient phenomena are greatly influenced by the variation of the Rayleigh Number with corrugation amplitude and frequency.
Resumo:
Cu/Ni/W nanolayered composites with individual layer thickness ranging from 5nm to 300nm were prepared by a magnetron sputtering system. Microstructures and strength of the nanolayered composites were investigated by using the nanoindentation method combined with theoretical analysis. Microstructure characterization revealed that the Cu/Ni/W composite consists of a typical Cu/Ni coherent interface and Cu/W and Ni/W incoherent interfaces. Cu/Ni/W composites have an ultrahigh strength and a large strengthening ability compared with bi-constituent Cu–X(X¼Ni, W, Au, Ag, Cr, Nb, etc.) nanolayered composites. Summarizing the present results and those reported in the literature, we systematically analyze the origin of the ultrahigh strength and its length scale dependence by taking into account the constituent layer properties, layer scales and heterogeneous layer/layer interface characteristics, including lattice and modulus mismatch as well as interface structure.
Resumo:
Plastic deformation behavior of Cu/Ni/Wmetallicmultilayers with individual layer thickness ranging from 5 nm to 300 nm is investigated by nanoindentation testing. The experimental results reveal that the composite still exhibits indentation-induced plastic deformation instability and the loss of strain hardening ability at the nanometer scale even if the composite contains two kinds of layer interfaces (face centered cubic(FCC)/FCC and FCC/ body centered cubic) simultaneously. Plastic deformation behavior of the nanolayered material was evaluated and analyzed.
Resumo:
The growth of c-axis oriented Y1Ba2Cu 3Ox thin films on an amorphous buffer layer of Y-ZrO 2, deposited on sapphire substrates, was investigated. Both films were grown by a pulsed laser deposition technique. A strong correlation was observed between the properties of Y1Ba2Cu 3Ox and the thickness of the buffer layer. A Tc of 89 K was obtained for an optimal buffer layer thickness of 9 nm. A model that adequately describes the film growth process was developed. A multilayer system of Y1Ba2Cu3Ox and amorphous Y-ZrO2 was grown and a Tc of 87 K for the upper c-axis oriented layer was measured.
Not just what they want, but why they want it: Traditional market research to deep customer insights
Resumo:
Purpose This paper explores advantages and disadvantages of both traditional market research and deep customer insight methods in order to lay the platform for revealing how a relationship between these two domains could be optimised during firm-based innovation. Design/methodology/approach The paper reports on an empirical research study conducted with thirteen Australian based firms engaged in a design-led approach to innovation. Firms were facilitated through a design-led approach where the process of gathering deep customer insights was isolated and investigated further in comparison to traditional market research methods. Findings Results show that deep customer insight methods are able to provide fresh, non-obvious ways of understanding customer needs, problems and behaviours that can become the foundation of new business opportunities. Findings concluded that deep customer insights methods provide the critical layer to understand why customers do and don’t engage with businesses. Revealing why was not accessible in traditional market research methods. Research limitations/implications The theoretical outcome of this study is a complementary methods matrix, providing guidance on appropriate implementation of research methods in accordance with a project’s timeline to optimise the complementation of traditional market research methods with design-led customer engagement methods. Practical implications Deep customer insight methods provide fresh, non-obvious ways of understanding customer needs, problems and behaviours that can become the foundation of new business opportunities. It is hoped that those in a position of data collection are encouraged to experiment and use deep customer insight methods to connect with their customers on a meaningful level and translate these insights into value. Originality/value This paper provides original value to a new understanding how design techniques can be applied to compliment and strengthen existing market research strategies. This is crucial in an era where business competition hinges on a subtle and often intimate understanding of customer needs and behaviours.
Resumo:
This paper investigates the influence of interlayer properties on the blast performance of laminated glass (LG) panels. A parametric study is carried out by varying the thickness and Young’s modulus (E) of the interlayer under two different blast loads. Results indicate the existence of a critical interlayer thickness (or E) that causes the onset of interlayer failure. This should be achieved in the design to enhance energy absorption, reduce support reactions and initiate a safer failure mode. Present findings provide information to achieve such design targets and enable safe and efficient performance of LGs under credible blast loads.
Resumo:
Carbon nanotubes (CNTs) and graphene are two representative nanomaterials comprised of purely element carbon [1,2]. Graphene is the two-dimensional, hexagonal sp2-carbon ring networks with one atomic layer thickness, while CNTs can be envisaged as one or several graphene sheets concentrically rolled up into a one-dimensional cylindrical structure, so-called singlewalled (SW) or multi-walled (MW) CNTs, respectively. Figure 12.1 shows the schematic diagram of structures of graphene, SWCNT and MWCNT. Owing to their exceptional mechanical, electrical, optical and thermal properties, CNTs and graphene have been widely considered as a new type of materials with great potentials to revolutionalize many of the biological and medical fields [3–5].
Resumo:
The mesoscale simulation of a lamellar mesophase based on a free energy functional is examined with the objective of determining the relationship between the parameters in the model and molecular parameters. Attention is restricted to a symmetric lamellar phase with equal volumes of hydrophilic and hydrophobic components. Apart from the lamellar spacing, there are two parameters in the free energy functional. One of the parameters, r, determines the sharpness of the interface, and it is shown how this parameter can be obtained from the interface profile in a molecular simulation. The other parameter, A, provides an energy scale. Analytical expressions are derived to relate these parameters to r and A to the bending and compression moduli and the permeation constant in the macroscopic equation to the Onsager coefficient in the concentration diffusion equation. The linear hydrodynamic response predicted by the theory is verified by carrying out a mesoscale simulation using the lattice-Boltzmann technique and verifying that the analytical predictions are in agreement with simulation results. A macroscale model based on the layer thickness field and the layer normal field is proposed, and the relationship between the parameters in the macroscale model from the parameters in the mesoscale free energy functional is obtained.
Resumo:
The use of geogrids in granular pavement layers could increase the modulus and the stiffness of granular layer and hence the required layer thickness can be reduced. Though, geogrids are being used in granular pavements to provide lateral restraint, bearing capacity, and membrane tension support, very limited studies have been carried out to investigate the effects of geogrids on modulus and stiffness of granular layer. In this study, two sections of a granular pavement were constructed: one with a geogrid at the bottom of the base layer and the other without a geogrid. Two sections were then tested using Falling Weight Deflectometer (FWD) and FWD results were analysed to determine the effect of geogrid on the overall modulus and stiffness of the granular pavement. The results suggested that the pavement section with geogrid has higher overall modulus and deflection ratio compared to the pavement section without geogrid.
Resumo:
his paper presents identification and mapping of vulnerable and safe zones for liquefaction hazard. About 850 bore logs data collected from geotechnical investigation reports have been used to estimate the liquefaction factor of safety for Bangalore Mahanagara palike (BMP) area of about 220 km(2). Liquefaction factor of safety is arrived based on surface level peak ground acceleration presented by Anbazhagan and Sitharam(5) and liquefaction resistance, using corrected standard penetration test (SPT) N values. The estimated factor of safety against liquefaction is used to estimate liquefaction potential index and liquefaction severity index. These values are mapped using Geographical information system (GIS) to identify the vulnerable and safe zones in Bangalore. This study shows that more than 95% of the BMP area is safe against liquefaction potential. However the western part of the BMP is not safe against liquefaction, as it may be subjected to liquefaction with probability of 35 to 65%. Three approaches used in this study show that 1) mapping least factor of safety irrespective of depth may be used to find liquefiable area for worst case. 2) mapping liquefaction potential index can be used to assess the liquefaction severity of the area by considering layer thickness and factor of safety and 3) mapping of liquefaction severity index can be used to access the probability of liquefaction of area.