986 resultados para CORE PROMOTER REGION
Resumo:
Aggregatibacter actinomycetemcomitans strains of serotype b and with a deletion of 530 bp in the promoter region of the leukotoxin gene (JP2 clone) are known to be associated with severe periodontitis. Our study was aimed to detect virulence genes of A. actinomycetemcomitans strains obtained from patients living in four German cities with different proportions of immigrants.
Resumo:
Introduction Angiogenic signals are a vital signal of placental integrity. Aldosterone has recently been shown to enhance placental growth factor (PlGF) expression in the peripheral vasculature [1] and to promote trophoblast growth [2]. The plgf gene possesses a functional mineralocorticoid receptor responsive element in the promoter region. Objectives Thus, we hypothesized that aldosterone adapts placental angiogenesis to trophoblast growth by secreting PlGF. Methods The human choriocarcinoma cell line BeWo and first and third trimester human primary trophoblasts cells were subjected to several syncytialization signals. Upon visual confirmation, the cultured cells were subjected to either control conditions, the known stimulator forskolin, and increasing amounts of aldosterone (10−9 to 10−6 M) with and without the competitive aldosterone receptor blocker spironolactone. After 6 and 24 h of incubation, RNA and protein were extracted. PlGF transcripts were quantified by Taqman PCR normalized to several housekeeping genes. Protein expression was quantified by ELISA. Results PlGF mRNA expression increased 3-fold with forskolin in BeWo cells. In this cell line, aldosterone could slightly stimulate PlGF production. In non-syncytialized primary human first trimester trophoblasts, aldosterone did not exert a specific effect. In contrast, the term primary human trophoblasts did respond with a 2.5-fold increase after incubation with aldosterone (10−7 M) in the presence of forskolin to allow forming a syncytial layer. PlGF protein was already slightly upregulated following 6 h of incubation with aldosterone. Conclusion We concluded that aldosterone does regulate PlGF expression in specified conditions during pregnancy. Inappropriately low aldosterone levels such as in preeclampsia might such not only compromise plasma volume and trophoblast growth but also placental vascularization and systemic PlGF availability. These observations merit further investigation.
Resumo:
To date, investigations of genetic diversity and the origins of domestication in sheep have utilised autosomal microsatellites and variation in the mitochondrial genome. We present the first analysis of both domestic and wild sheep using genetic markers residing on the ovine Y chromosome. Analysis of a single nucleotide polymorphism (oY1) in the SRY promoter region revealed that allele A-oY1 was present in all wild bighorn sheep (Ovis canadensis), two subspecies of thinhorn sheep (Ovis dalli), European Mouflon (Ovis musimon) and the Barbary (Ammontragis lervia). A-oY1 also had the highest frequency (71.4%) within 458 domestic sheep drawn from 65 breeds sampled from Africa, Asia, Australia, the Caribbean, Europe, the Middle East and Central Asia. Sequence analysis of a second locus, microsatellite SRYM18, revealed a compound repeat array displaying fixed differences, which identified bighorn and thinhorn sheep as distinct from the European Mouflon and domestic animals. Combined genotypic data identified 11 male-specific haplotypes that represented at least two separate lineages. Investigation of the geographical distribution of each haplotype revealed that one (H6) was both very common and widespread in the global sample of domestic breeds. The remaining haplotypes each displayed more restricted and informative distributions. For example, H5 was likely founded following the domestication of European breeds and was used to trace the recent transportation of animals to both the Caribbean and Australia. A high rate of Y chromosomal dispersal appears to have taken place during the development of domestic sheep as only 12.9% of the total observed variation was partitioned between major geographical regions.
Resumo:
Glomerular mesangial cells can produce high amounts of nitric oxide (NO) and reactive oxygen species (ROS). Here we analyzed the impact of NO on the ROS-generating system, particularly on the NADPH oxidase Nox1. Nox1 mRNA and protein levels were markedly decreased by treatment of mesangial cells with the NO-releasing compound DETA-NO in a concentration- and time-dependent fashion. By altering the cGMP signaling system with different inhibitors or activators, we revealed that the effect of NO on Nox1 expression is at least in part mediated by cGMP. Analysis of a reporter construct comprising the 2547 bp of the nox1 promoter region revealed that a stimulatory effect of IL-1beta on nox1 transcription is counteracted by an inhibitory effect of IL-1beta-evoked endogenous NO formation. Moreover, pretreatment of mesangial cells with DETA-NO attenuated platelet-derived growth factor (PDGF)-BB or serum stimulated production of superoxide as assessed by real-time EPR spectroscopy and dichlorofluorescein formation. Transfection of mesangial cells with siRNAs directed against Nox1 and Nox4 revealed that inhibition of Nox1, but not Nox4 expression, is responsible for the reduced ROS formation by NO. Obviously, there exists a fine-tuned crosstalk between NO and ROS generating systems in the course of inflammatory diseases.
Resumo:
Mutations in the FBN1 gene are the major cause of Marfan syndrome (MFS), an autosomal dominant connective tissue disorder, which displays variable manifestations in the cardiovascular, ocular, and skeletal systems. Current molecular genetic testing of FBN1 may miss mutations in the promoter region or in other noncoding sequences as well as partial or complete gene deletions and duplications. In this study, we tested for copy number variations by successively applying multiplex ligation-dependent probe amplification (MLPA) and the Affymetrix Human Mapping 500 K Array Set, which contains probes for approximately 500,000 single-nucleotide polymorphisms (SNPs) across the genome. By analyzing genomic DNA of 101 unrelated individuals with MFS or related phenotypes in whom standard genetic testing detected no mutation, we identified FBN1 deletions in two patients with MFS. Our high-resolution approach narrowed down the deletion breakpoints. Subsequent sequencing of the junctional fragments revealed the deletion sizes of 26,887 and 302,580 bp, respectively. Surprisingly, both deletions affect the putative regulatory and promoter region of the FBN1 gene, strongly indicating that they abolish transcription of the deleted allele. This expectation of complete loss of function of one allele, i.e. true haploinsufficiency, was confirmed by transcript analyses. Our findings not only emphasize the importance of screening for large genomic rearrangements in comprehensive genetic testing of FBN1 but, importantly, also extend the molecular etiology of MFS by providing hitherto unreported evidence that true haploinsufficiency is sufficient to cause MFS.
Resumo:
HLA-G is a non-classical MHC class Ib molecule predominantly expressed in cytotrophoblasts and under pathological conditions also in chronically inflamed and in malignant tissues. Recently an increased expression of HLA-G was found in ulcerative colitis (UC), but not in Crohn's disease (CD). The HLA-G gene is located in IBD3, a linkage region for inflammatory bowel disease (IBD). A 14-bp deletion polymorphism (Del+/Del-) within exon 8 of the HLA-G gene might influence transcription activity and is therefore of potential functional relevance. To investigate whether the 14-bp deletion polymorphism is associated with IBD, 371 patients with CD, 257 patients with UC and 739 controls were genotyped. The heterozygous genotype (P = 0.031) and the Del+ phenotype (P = 0.038) were significantly increased, whereas the homozygous Del- phenotype (P = 0.038) was significantly decreased in UC when compared with CD. Thus, the 14-bp deletion polymorphism within the HLA-G gene displayed significant differences between UC and CD. Moreover, a significant increase of the Del+ allele (P = 0.002) and the Del+/Del+ genotype (P = 0.013) and a consecutive decrease of the Del-/- genotype (P = 0.024) were observed in those CD cases positive for ileocecal resection. Thus, a potential effect of the HLA-G gene in IBD may affect both UC and CD. Other polymorphisms linked to the 14-bp deletion polymorphism might also contribute to immunopathogenesis. As there are several partly functional polymorphisms within the promoter region potentially influencing HLA-G expression, further studies in IBD are necessary in the context of differential expression of HLA-G between UC and CD.
Resumo:
To identify components of the copper homeostatic mechanism of Lactococcus lactis, we employed two-dimensional gel electrophoresis to detect changes in the proteome in response to copper. Three proteins upregulated by copper were identified: glyoxylase I (YaiA), a nitroreductase (YtjD), and lactate oxidase (LctO). The promoter regions of these genes feature cop boxes of consensus TACAnnTGTA, which are the binding site of CopY-type copper-responsive repressors. A genome-wide search for cop boxes revealed 28 such sequence motifs. They were tested by electrophoretic mobility shift assays for the interaction with purified CopR, the CopY-type repressor of L. lactis. Seven of the cop boxes interacted with CopR in a copper-sensitive manner. They were present in the promoter region of five genes, lctO, ytjD, copB, ydiD, and yahC; and two polycistronic operons, yahCD-yaiAB and copRZA. Induction of these genes by copper was confirmed by real-time quantitative PCR. The copRZA operon encodes the CopR repressor of the regulon; a copper chaperone, CopZ; and a putative copper ATPase, CopA. When expressed in Escherichia coli, the copRZA operon conferred copper resistance, suggesting that it functions in copper export from the cytoplasm. Other member genes of the CopR regulon may similarly be involved in copper metabolism.
Resumo:
The enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) catalyzes the conversion of inactive to active glucocorticoids. 11beta-HSD1 plays a crucial role in the pathogenesis of obesity and controls glucocorticoid actions in inflammation. Several studies have demonstrated that TNF-alpha increases 11beta-HSD1 mRNA and activity in various cell models. Here, we demonstrate that mRNA and activity of 11beta-HSD1 is increased in liver tissue from transgenic mice overexpressing TNF-alpha, indicating that this effect also occurs in vivo. To dissect the molecular mechanism of this increase, we investigated basal and TNF-alpha-induced transcription of the 11beta-HSD1 gene (HSD11B1) in HepG2 cells. We found that TNF-alpha acts via p38 MAPK pathway. Transient transfections with variable lengths of human HSD11B1 promoter revealed highest activity with or without TNF-alpha in the proximal promoter region (-180 to +74). Cotransfection with human CCAAT/enhancer binding protein-alpha (C/EBPalpha) and C/EBPbeta-LAP expression vectors activated the HSD11B1 promoter with the strongest effect within the same region. Gel shift and RNA interference assays revealed the involvement of mainly C/EBPalpha, but also C/EBPbeta, in basal and only of C/EBPbeta in the TNF-alpha-induced HSD11B1 expression. Chromatin immunoprecipitation assay confirmed in vivo the increased abundance of C/EBPbeta on the proximal HSD11B1 promoter upon TNF-alpha treatment. In conclusion, C/EBPalpha and C/EBPbeta control basal transcription, and TNF-alpha upregulates 11beta-HSD1, most likely by p38 MAPK-mediated increased binding of C/EBPbeta to the human HSD11B1 promoter. To our knowledge, this is the first study showing involvement of p38 MAPK in the TNF-alpha-mediated 11beta-HSD1 regulation, and that TNF-alpha stimulates enzyme activity in vivo.
Resumo:
BACKGROUND: Macrophage migration inhibitory factor (MIF) plays an important regulatory role in sepsis. In the promoter region a C/G single nucleotide polymorphism (SNP) at position -173 (rs755622) and a CATT5-8 microsatellite at position -794 are related to modified promoter activity. The purpose of the study was to analyze their association with the incidence and outcome of severe sepsis. METHODS: Genotype distributions and allele frequencies in 169 patients with severe sepsis, 94 healthy blood donors and 183 postoperative patients without signs of infection or inflammation were analyzed by real time PCR and Sequence analysis. All included individuals were Caucasians. RESULTS: Genotype distribution and allele frequencies of severe sepsis patients were comparable to both control groups. However, the genotype and allele frequencies of both polymorphisms were associated significantly with the outcome of severe sepsis. The highest risk of dying from severe sepsis was detectable in patients carrying a haplotype with the alleles -173 C and CATT7 (p = 0.0005, fisher exact test, RR = 1,806, CI: 1.337 to 2.439). CONCLUSION: The haplotype with the combination of the -173 C allele and the -794 CATT7 allele may not serve as a marker for susceptibility to sepsis, but may help identify septic patients at risk of dying.
Resumo:
The BCL6 proto-oncogene encodes a transcriptional repressor that is required for germinal center (GC) formation and whose deregulation by genomic lesions is implicated in the pathogenesis of GC-derived diffuse large B cell lymphoma (DLBCL) and, less frequently, follicular lymphoma (FL). The biological function of BCL6 is only partially understood because no more than a few genes have been functionally characterized as direct targets of BCL6 transrepression activity. Here we report that the anti-apoptotic proto-oncogene BCL2 is a direct target of BCL6 in GC B cells. BCL6 binds to the BCL2 promoter region by interacting with the transcriptional activator Miz1 and suppresses Miz1-induced activation of BCL2 expression. BCL6-mediated suppression of BCL2 is lost in FL and DLBCL, where the 2 proteins are pathologically coexpressed, because of BCL2 chromosomal translocations and other mechanisms, including Miz1 deregulation and somatic mutations in the BCL2 promoter region. These results identify an important function for BCL6 in facilitating apoptosis of GC B cells via suppression of BCL2, and suggest that blocking this pathway is critical for lymphomagenesis.
Resumo:
A small subset of familial pancreatic endocrine tumors (PET) arises in patients with von Hippel-Lindau syndrome and these tumors may have an adverse outcome compared to other familial PET. Sporadic PET rarely harbors somatic VHL mutations, but the chromosomal location of the VHL gene is frequently deleted in sporadic PET. A subset of sporadic PET shows active hypoxia signals on mRNA and protein level. To identify the frequency of functionally relevant VHL inactivation in sporadic PET and to examine a possible prognostic significance we correlated epigenetic and genetic VHL alterations with hypoxia signals. VHL mutations were absent in all 37 PETs examined. In 2 out of 35 informative PET (6%) methylation of the VHL promoter region was detected and VHL deletion by fluorescence in situ hybridization was found in 14 out of 79 PET (18%). Hypoxia inducible factor 1alpha (HIF1-alpha), carbonic anhydrase 9 (CA-9), and glucose transporter 1 (GLUT-1) protein was expressed in 19, 27, and 30% of the 152 PETs examined. Protein expression of the HIF1-alpha downstream target CA-9 correlated significantly with the expression of CA-9 RNA (P<0.001), VHL RNA (P<0.05), and VHL deletion (P<0.001) as well as with HIF1-alpha (P<0.005) and GLUT-1 immunohistochemistry (P<0.001). These PET with VHL alterations and signs of hypoxia signalling were characterized by a significantly shortened disease-free survival. We conclude that VHL gene impairment by promoter methylation and VHL deletion in nearly 25% of PET leads to the activation of the HIF-pathway. Our data suggest that VHL inactivation and consecutive hypoxia signals may be a mechanism for the development of sporadic PET with an adverse outcome.
Resumo:
OBJECTIVES Resistance to extended-spectrum cephalosporins (ESCs) in Escherichia coli can be due to the production of ESBLs, plasmid-mediated AmpCs (pAmpCs) or chromosomal AmpCs (cAmpCs). Information regarding type and prevalence of β-lactamases, clonal relations and plasmids associated with the bla genes for ESC-R E. coli (ESC-R-Ec) detected in Switzerland is lacking. Moreover, data focusing on patients referred to the specialized outpatient clinics (SOCs) are needed. METHODS We analysed 611 unique E. coli isolated during September-December 2011. ESC-R-Ec were studied with microarrays, PCR/DNA sequencing for blaESBLs, blapAmpCs, promoter region of blacAmpC, IS elements, plasmid incompatibility group, and also implementing transformation, aIEF, rep-PCR and MLST. RESULTS The highest resistance rates were observed in the SOCs, whereas those in the hospital and community were lower (e.g. quinolone resistance of 22.6%, 17.2% and 9.0%, respectively; P = 0.003 for SOCs versus community). The prevalence of ESC-R-Ec in the three settings was 5.3% (n = 11), 7.8% (n = 22) and 5.7% (n = 7), respectively. Thirty isolates produced CTX-M ESBLs (14 were CTX-M-15), 5 produced CMY-2 pAmpC and 5 hyper-expressed cAmpCs due to promoter mutations. Fourteen isolates were of sequence type 131 (ST131; 10 with CTX-M-15). blaCTX-M and blaCMY-2 were associated with an intact or truncated ISEcp1 and were mainly carried by IncF, IncFII and IncI1plasmids. CONCLUSIONS ST131 producing CTX-M-15 is the predominant clone. The prevalence of ESC-R-Ec (overall 6.5%) is low, but an unusual relatively high frequency of AmpC producers (25%) was noted. The presence of ESC-R-Ec in the SOCs and their potential ability to be exchanged between hospital and community should be taken into serious consideration.
Resumo:
The neuropeptide Phe-Met-Arg-Phe-NH(2) (FMRFa) can induce transcription-dependent long-term synaptic depression (LTD) in Aplysia sensorimotor synapses. We investigated the role of the ubiquitin-proteasome system and the regulation of one of its components, ubiquitin C-terminal hydrolase (ap-uch), in LTD. LTD was sensitive to presynaptic inhibition of the proteasome and was associated with upregulation of ap-uch mRNA and protein. This upregulation appeared to be mediated by CREB2, which is generally regarded as a transcription repressor. Binding of CREB2 to the promoter region of ap-uch was accompanied by histone hyperacetylation, suggesting that CREB2 cannot only inhibit but also promote gene expression. CREB2 was phosphorylated after FMRFa, and blocking phospho-CREB2 blocked LTD. In addition to changes in the expression of ap-uch, the synaptic vesicle-associated protein synapsin was downregulated in LTD in a proteasome-dependent manner. These results suggest that proteasome-mediated protein degradation is engaged in LTD and that CREB2 may act as a transcription activator under certain conditions.
Resumo:
Heat shock protein 90 (HSP90) is an abundant molecular chaperone that regulates the functional stability of client oncoproteins, such as STAT3, Raf-1 and Akt, which play a role in the survival of malignant cells. The chaperone function of HSP90 is driven by the binding and hydrolysis of ATP. The geldanamycin analog, 17-AAG, binds to the ATP pocket of HSP90 leading to the degradation of client proteins. However, treatment with 17-AAG results in the elevation of the levels of antiapoptotic proteins HSP70 and HSP27, which may lead to cell death resistance. The increase in HSP70 and HSP27 protein levels is due to the activation of the transcription factor HSF-1 binding to the promoter region of HSP70 and HSP27 genes. HSF-1 binding subsequently promotes HSP70 and HSP27 gene expression. Based on this, I hypothesized that inhibition of transcription/translation of HSP or client proteins would enhance 17-AAG-mediated cytotoxicity. Multiple myeloma (MM) cell lines MM.1S, RPMI-8226, and U266 were used as a model. To test this hypothesis, two different strategies were used. For the first approach, a transcription inhibitor was combined with 17-AAG. The established transcription inhibitor Actinomycin D (Act D), used in the clinic, intercalates into DNA and blocks RNA elongation. Stress inducible (HSP90á, HSP70 and HSP27) and constitutive (HSP90â and HSC70) mRNA and protein levels were measured using real time RT-PCR and immunoblot assays. Treatment with 0.5 µM 17-AAG for 8 hours resulted in the induction of all HSP transcript and protein levels in the MM cell lines. This induction of HSP mRNA levels was diminished by 0.05 µg/mL Act D for 12 hours in the combination treatment, except for HSP70. At the protein level, Act D abrogated the 17-AAG-mediated induction of all HSP expression levels, including HSP70. Cytotoxic evaluation (Annexin V/7-AAD assay) of Act D in combination with 17-AAG suggested additive or more than additive interactions. For the second strategy, an agent that affected bioenergy production in addition to targeting transcription and translation was used. Since ATP is necessary for the proper folding and maturation of client proteins by HSP90, ATP depletion should lead to a decrease in client protein levels. The transcription and translation inhibitor 8-Chloro-Adenosine (8-Cl-Ado), currently in clinical trials, is metabolized into its cytotoxic form 8-Cl-ATP causing a parallel decrease of the cellular ATP pool. Treatment with 0.5 µM 17-AAG for 8 hours resulted in the induction of all HSP transcript and protein levels in the three MM cell lines evaluated. In the combination treatment, 10 µM 8-Cl-Ado for 20 hours did not abrogate the induction of HSP mRNA or protein levels. Since cellular bioenergy is necessary for the stabilization of oncoproteins by HSP90, immunoblot assays analyzing for expression levels of client proteins such as STAT3, Raf-1, and Akt were performed. Immunoblot assays detecting for the phosphorylation status of the translation repressor 4E-BP1, whose activity is modulated by upstream kinases sensitive to changes in ATP levels, were also performed. The hypophosphorylated state of 4E-BP1 leads to translation repression. Data indicated that treatment with 17-AAG alone resulted in a minor (<10%) change in STAT3, Raf-1, and Akt protein levels, while no change was observed for 4E-BP1. The combination treatment resulted in more than 50% decrease of the client protein levels and hypophosphorylation of 4E-BP1 in all MM cell lines. Treatment with 8-Cl-Ado alone resulted in less than 30% decrease in client protein levels as well as a decrease in 4E-BP1 phosphorylation. Cytotoxic evaluation of 8-Cl-Ado in combination with 17-AAG resulted in more than additive cytotoxicity when drugs were combined in a sequential manner. In summary, these data suggest that the mechanism-based combination of agents that target transcription, translation, or decrease cellular bioenergy with 17-AAG results in increase cytotoxicity when compared to the single agents. Such combination strategies may be applied in the clinic since these drugs are established chemotherapeutic agents or currently in clinical trials.
Resumo:
Methylating agents are involved in carcinogenesis, and the DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT) removes methyl group from O(6)-methylguanine. Genetic variation in DNA repair genes has been shown to contribute to susceptibility to squamous cell carcinoma of the head and neck (SCCHN). We hypothesize that MGMT polymorphisms are associated with risk of SCCHN. In a hospital-based case-control study of 721 patients with SCCHN and 1234 cancer-free controls frequency-matched by age, sex and ethnicity, we genotyped four MGMT polymorphisms, two in exon 3, 16195C>T and 16286C>T and two in the promoter region, 45996G>T and 46346C>A. We found that none of these polymorphisms alone had a significant effect on risk of SCCHN. However, when these four polymorphisms were evaluated together by the number of putative risk genotypes (i.e. 16195CC, 16286CC, 45996GT+TT, and 46346CA+AA), a statistically significantly increased risk of SCCHN was associated with the combined genotypes with three to four risk genotypes, compared with those with zero to two risk genotypes (adjusted odds ratio (OR)=1.27; 95% confidence interval (CI)=1.05-1.53). This increased risk was also more pronounced among young subjects (OR=1.81; 95% CI=1.11-2.96), men (OR=1.24; 95% CI=1.00-1.55), ever smokers (OR=1.25; 95%=1.01-1.56), ever drinkers (OR=1.29; 95% CI=1.04-1.60), patients with oropharyngeal cancer (OR=1.45; 95% CI=1.12-1.87), and oropharyngeal cancer with regional lymph node metastasis (OR=1.52; 95% CI=1.16-1.89). In conclusion, our results suggest that any one of MGMT variants may not have a substantial effect on SCCHN risk, but a joint effect of several MGMT variants may contribute to risk and progression of SCCHN, particularly for oropharyngeal cancer, in non-Hispanic whites.