967 resultados para CORALS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tropical south-western Pacific temperatures are of vital importance to the Great Barrier Reef (GBR), but the role of sea surface temperatures (SSTs) in the growth of the GBR since the Last Glacial Maximum remains largely unknown. Here we present records of Sr/Ca and d18O for Last Glacial Maximum and deglacial corals that show a considerably steeper meridional SST gradient than the present day in the central GBR. We find a 1-2 °C larger temperature decrease between 17° and 20°S about 20,000 to 13,000 years ago. The result is best explained by the northward expansion of cooler subtropical waters due to a weakening of the South Pacific gyre and East Australian Current. Our findings indicate that the GBR experienced substantial meridional temperature change during the last deglaciation, and serve to explain anomalous deglacial drying of northeastern Australia. Overall, the GBR developed through significant SST change and may be more resilient than previously thought.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The widespread occurrence of microbialites in the last deglacial reef frameworks (16-6 Ka BP) implies that the accurate study of their development patterns is of prime importance to unravel the evolution of reef architecture through time and to reconstruct the reef response to sea-level variations and environmental changes. The present study is based on the sedimentological and chronological analysis (14C AMS dating) of drill cores obtained during the IODP Expedition #310 "Tahiti Sea Level" on the successive terraces which typify the modern reef slopes from Tahiti. It provides a comprehensive data base to investigate the microbialite growth patterns (i.e. growth rates and habitats), to analyze their roles in reef frameworks and to reconstruct the evolution of the reef framework architecture during sea-level rise. The last deglacial reefs from Tahiti are composed of two distinctive biological communities: (1) the coralgal communities including seven assemblages characterized by various growth forms (branching, robust branching, massive, tabular and encrusting) that form the initial frameworks and (2) the microbial communities developed in the primary cavities of those frameworks, a few meters (1.5 to 6 m) below the living coral reef surface, where they heavily encrusted the coralgal assemblages to form microbialite crusts. The dating results demonstrate the occurrence of two distinctive generations of microbialites: the "reefal microbialites" which developed a few hundred years after coralgal communities in shallow-water environments, whereas the "slope microbialites" grew a few thousands of years later in significantly deeper water conditions after the demise of coralgal communities. The development of microbialites was controlled by the volume and the shape of the primary cavities of the initial reef frameworks determined by the morphology and the packing of coral colonies. The most widespread microbialite development occurred in frameworks dominated by branching, thin encrusting, tabular and robust branching coral colonies which built loose and open frameworks typified by a high porosity (> 50%). In contrast, their growth was minimal in compact coral frameworks formed by massive and thick encrusting corals where primary cavities yielded a low porosity (~ 30%) and could not host a significant microbialite expansion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present uranium-thoriumchronology for a 102 mcore through a Pleistocene reef at Tahiti (French Polynesia) sampled during IODP Expedition 310 "Tahiti Sea Level". We employ total and partial dissolution procedures on the older coral samples to investigate the diagenetic overprint of the uranium-thoriumsystem. Although alteration of the U-Th system cannot be robustly corrected, diagenetic trends in the U-Th data, combined with sea level and subsidence constraints for the growth of the corals enables the age of critical samples to be constrained to marine isotope stage 9. We use the ages of the corals, together with d18O based sea-level histories, to provide maximum constraints on possible paleo water-depths. These depth constraints are then compared to independent depth estimates based on algal and foraminiferal assemblages, microbioerosion patterns, and sedimentary facies, confirming the accuracy of these paleo water-depth estimates. We also use the fact that corals could not have grown above sea level to place amaximumconstraint on the subsidence rate of Tahiti to be 0.39 m ka**-1,with the most likely rate being close to the existing minimum estimate of 0.25m ka**-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A core from a coral colony of Porites lutea was analysed for stable oxygen isotopic composition*. A 200-year proxy record of sea surface temperatures from the Houtman Abrolhos Islands off west Australia was obtained from coral delta18O. At 29°S, the Houtman Abrolhos are the southernmost major reef complex of the Indian Ocean. They are located on the path of the Leeuwin Current, a southward flow of warm, tropical water, which is coupled to Indonesian throughflow. Coral delta18O primarily reflects local oceanographic and climatic variability, which is largely determined by spatial variability of the Leeuwin Current. However, coherence between coral delta18O and the current strength itself is relatively weak. Evolutionary spectral and singular spectrum analyses of coral delta18O demonstrate a high variability in spectral composition through time. Oscillations in the 5-7-y, 14-15-y, and quasi-biennial bands reflect teleconnections of local sea surface temperature (SST) to tropical Pacific climate variability. Deviations between local (coral-based) and regional (instrument) SST contain a cyclic component with a period of 15 y. Coral delta18O suggests a rise in SST by 0.6°C since AD 1944, consistent with available instrumental SST records. A long-term warming by 1.4°C since AD 1795 is inferred from the coral record.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the influences of temperature, salinity and pH on the calcium isotope as well as trace and minor element (uranium, strontium, magnesium) to Ca ratios on calcium carbonate cysts of the calcareous dinoflagellate species Thoracosphaera heimii grown in laboratory cultures. The natural habitat of this species is the photic zone (preferentially at the chlorophyll maximum depth) of temperate to tropical oceans, and it is abundant in deep-sea sediments over the entire Cenozoic. In our experiments, temperatures ranged from 12 to 30 °C, salinity from 36.5 to 38.8 and pH from 7.9 to 8.4. The delta44/40Ca of T. heimii cysts resembles that of other marine calcifiers, including coccolithophores, foraminifers and corals. However, its temperature sensitivity is considerably smaller and statistically insignificant, and T. heimii might serve as a recorder of changes in seawater delta44/40Ca over geologic time. The Sr/Ca ratios of T. heimii cysts show a pronounced temperature sensitivity (0.016 mmol/mol °C**-1) and have the potential to serve as a palaeo-sea surface temperature proxy. No clear temperature- and pH-dependences were observed for Mg/Ca. U/Ca seems to be influenced by temperature and pH, but the correlations change sign at 23 °C and pH 8.2, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We compared the suitability of two skeletal materials of the Atlantic brain coral Diploria strigosa for 230Th/U-dating: the commonly used bulk material comprising all skeletal elements and the denser theca wall material. Eight fossil corals of presumably Last Interglacial age from Bonaire, southern Caribbean Sea, were investigated, and several sub-samples were dated from each coral. For four corals, both the ages and the activity ratios of the bulk material and theca wall agree within uncertainty. Three corals show significantly older ages for their bulk material than for their theca wall material as well as substantially elevated 232Th content and (230Th/238U) ratios. The bulk material samples of another coral show younger ages and lower (230Th/238U) ratios than the corresponding theca wall samples. This coral also contains a considerable amount of 232Th. The application of the available open-system models developed to account for post-depositional diagenetic effects in corals shows that none of the models can successfully be applied to the Bonaire corals. The most likely explanation for this observation is that the assumptions of the models are not fulfilled by our data set. Comparison of the theca wall and bulk material data enables us to obtain information about the open-system processes that affected the corals. The corals showing apparently older ages for their bulk material were probably affected by contamination with a secondary (detrital) phase. The most likely source of the detrital material is carbonate sand. The higher (230Th/232Th) ratio of this material implies that detrital contamination would have a much stronger impact on the ages than a contaminant with a bulk Earth (230Th/232Th) ratio and that the threshold for the commonly applied 232Th reliability criterion would be much lower than the generally used value of 1 ng g^-1. The coral showing apparently younger ages for its bulk material was probably influenced by more than one diagenetic process. A potential scenario is a combination of detrital contamination and U addition by secondary pore infillings. Our results show that the dense theca wall material of D. strigosa is generally less affected by post-depositional open-system behaviour and better suited for 230Th/U-dating than the bulk material. This is also obvious from the fact that all ages of theca wall material reflect a Last Interglacial origin (~125 ka), whereas the bulk material samples are either substantially older or younger. However, for some corals, the 230Th/U-ages and activity ratios of the bulk material and the theca wall samples are similar. This shows that strictly reliable 230Th/U-ages can also be obtained from bulk material samples of exceptionally well-preserved corals. However, the bulk material samples more frequently show elevated activity ratios and ages than the corresponding theca wall samples. Our findings should be generally applicable to brain corals (Mussidae) that are found in tropical oceans worldwide and may enable reliable 230Th/U-dating of fossil corals with similar skeletal architecture, even if their bulk skeleton is altered by diagenesis. The 230Th/U-ages we consider reliable (120-130 ka), along with a recently published age of 118 ka, provide the first comprehensive dating of the elevated lower reef terrace at Bonaire (118-130 ka), which is in agreement in timing and duration with other Last Interglacial records.

Relevância:

10.00% 10.00%

Publicador: